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Abstract. Terrestrial laser scanning technology has developed rapidly, and substantial data
have been accumulated in dynamic forest monitoring. Point cloud data of standing trees not
only provide tree parameters but also show three-dimensional tree structure. Selection of the
key parameters from the point cloud data is a prerequisite for volume estimation of standing
trees. Our study collected three phases of data over 5 years from Liriodendron chinense plan-
tation forest. A series of the height-related characteristic parameters were extracted from the
scanned points of each tree stems, including a proposed new parameter and the height cumulative
percentage (Hz%). The upper diameter accuracy obtained by multi-station scanning is high, and
the correlation coefficient with manually measured data is 0.9864. The shape of the upper tree
trunk extracted by the point cloud is equivalent to that of the sample trees (height of 10 to 20 m)
with points at H25% and H50% of the height. These two parameters also show a high correlation
with volume. Results show that H25% can better associated with tree volume, with R2 at 0.951,
0.957, and 0.901 at three stages, respectively. The volume dynamic change calculated by model
2 is linearly correlated with the rate in point cloud restoration, the intercept is −0.081, and the
slope is 1.14. Compared with previous researches, the volume model established based on point
cloud hierarchical parameters in this study could be used for monitoring the dynamic volume
changes in Liriodendron forest. The Hz value extracted from multi-station scanning point cloud
data could be used to represent the dynamic forest structure. The results of this study contribute
to further development of terrestrial laser scanning-based modeling and estimation methods for
individual tree and forest growth, thereby improving the accuracy of forest inventories estimation
and providing better tools for decision-making processes. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.15
.028503]
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1 Introduction

Long-term dynamic monitoring and evaluation of forest growth and development constitute the
main objectives and research directions of forest management.1 The application of three-dimensional
(3D) laser point cloud data has facilitated various landscapes and plot-level applications ranging
from the structure and distribution of forest to the dynamic changes of forest resources.2–7

Tree growth can be determined through changes in the most typical tree attributes such
as diameter at breast height (DBH) and height (h). Traditional measurements of standing
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parameters and volume modeling require data from destructive logging to have accurate
values.3,6 Some investigations performed in the early 2000s explored the capability of terrestrial
laser scanning (TLS) technology to measure forestland factors.4,6,8 It can accurately measure the
structural properties of live stumpage, such as the stem curves, which are difficult to be directly
measured by conventional methods.3,9 However, preliminary research focuses on precision of
point cloud,2 modeling method,4,10 and selection of appropriate parameters.5,11 Some research
showed result that current diameter-based allometric models for forest biomass are highly
uncertain.12 And some researchers found that the point cloud-derived diameters in a taper curve
matching approach performed the best at estimating diameters at the lowest parts of the stem
(<30% of the total tree height).13

In recent years, many researches focused on the application of multi-phase scanning data.
Several studies concentrate on measuring single-tree attributes by means of TLS other than air-
borne LiDAR system because airborne laser is blocked by canopy, the identification accuracy of
understory trunk morphology, especially ground diameter and DBH, is low. Kaasalainen et al.14

obtained the multi-temporal point cloud information of loblolly pine with TLS. The point cloud
characteristic parameters of each time phase were extracted and the correlation between them
and the dynamic estimation model of AGB was established based on the characteristic param-
eters of different phases. Kaasalainen et al.14 were able to discover growth and changes in the
structure of trees with repeated scans during a 3-year period. Mengesha et al.15 reported that
multi-temporal TLS data enabled the accurate estimation of stem volume growth. Luoma et al.7

obtained the laser-point cloud data of four sample plots in Nucsio National Park in Finland in
2008 and 2017 and extracted tree measurement factors such as DBH, tree height, shape number,
and shape ratio from the laser-point cloud. It described the change of a single tree in 9 years with
average relative change of trunk volume is 65.0%. So far, most structural measures are focused
on or limited to individual parameter.

TLS has shown considerable promise in obtaining highly accurate estimates of the tree diam-
eter and stem curve, and the point cloud density can accurately reflect the spatial distribution
of tree trunks from top to bottom.16 However, several studies have reported underestimates for
TLS-based tree height.6 In terms of the data size and geometric complexity, the segmentation of
characteristic TLS parameters has great advantages.1 Models can be established to extract the
structural parameters of stumpage using point cloud coordinate information.17 A multi-station
scanning method was used in the study. After splicing, denoising, and normalization, the point
cloud data have a relatively uniform point distribution regardless of the type of equipment. The
next phase is to obtain complete information about the stumpage diameter, tree height, and ver-
tical distribution of the tree crown. An algorithm to extract a new hierarchical characteristic of
TLS point clouds was developed. Stem analysis data were used to analyze the hierarchical struc-
ture parameters. Then the final models corresponding to the measured stumpage characteristics
were developed to estimate volume change based on the characteristic parameter using data in
three periods to provide a reference for applying TLS in monitoring tree volume and the dynamic
forest changes.

2 Materials and Methods

2.1 Study Site and Data Collection

The study site was located within the Experimental Forest of Nanjing Forestry University to the
west of Wuqi Hill in Jiangsu Province, China. The annual average temperature is 15.5°C with a
maximum of 29°C in summer and a minimum of 2°C in winter. The average elevation and slope
are ∼150 m and 20 deg, respectively. The yellow brownish soil is ∼60-cm-thick and has a gravel
content of 20% and surface humus content of 1.5%. An even-aged forest of Chinese tulip trees
(Liriodendron chinense) was planted with a spacing of 3 m × 3 m in March 1981, and the sam-
ple plot has a size of 40 m × 25 m.

The point cloud data of the sample plot were collected in three phases in winter in January
2014, 2018, and 2019, when the trees were leafless. The plantation had very little undergrowth
and therefore is appropriate for research using TLS. A Leica Scan Station C10 was used in 2014,
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where the scanning angle was set to 270 deg vertically and 360 deg horizontally, and the scan-
ning rate was 50;000 dots=s. The upper and lower targets were used to facilitate the first data
registration. In 2018 and 2019, a Riegl VZ-400i laser scanner with an original digital echo, real-
time waveform processing, and multi-beam transceiver processing technologies was used, target
was not needed, and it is capable of accepting infinite echoes with scanning angles of 100 deg
vertically and 360 deg horizontally and has a scanning rate of 500;000 dots=s.

At the same time, sample data were obtained by conducting a manual inventory check of each
standing tree. In the inventory, the tree height was measured by a Leica D810 altimeter, and the
DBH and ground diameter were both measured with a diameter tape. Two trees were selected
according to mean DBH from the sample data in 2019: the fifth tree in row 5 (DBH of 29.2 cm)
and the seventh tree in row 7 (DBH of 33.1 cm). Figure 1 shows a schematic of the distribution of
Chinese tulip trees at the sample site in 2014, 2018, and 2019, and the gray squares represent the
locations of the trees utilized for stem analysis in 2019.

2.2 Method

The sample plot was scanned at multiple stations, and all data were merged together through
registration and splicing. Then all points were imported into the same 3D coordination system.18

The registration precision was 0.0045 m in 2014 and 0.0038 m in 2018 and 2019. LiDAR360
v2.2 was used to extract the digital elevation model (DEM) and carry out the normalization
procedure. Because the trees were leafless, the degree of overlap between individual tree point
clouds obtained at the canopy level was almost negligible. Consequently, the crown of each

Fig. 1 Sketch of the tree distribution in the study area.
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individual tree could be clearly identified from the top view of the sample plot data. To fully
obtain information regarding the 3D forest, this study employed manual identification and sub-
setting to position and segment each tree to facilitate the subsequent extraction of the standing
timber parameters.

2.2.1 Extracted tree height

To extract the tree height of each tree obtained by manual recognition and subsetting, the height
of a single tree was calculated by the point cloud height difference, which is the difference in the
peak cloud height of a single tree minus the height of the ground point cloud as shown in the
following equation:

EQ-TARGET;temp:intralink-;e001;116;603H ¼ Zmax − Zmin: (1)

2.2.2 Point cloud hierarchical characteristic analysis

Although point cloud density features can accurately reflect the state of the target spatial dis-
tribution, most density features are based on plane density analysis, which cannot fully reflect the
real density characteristics of 3D point clouds. From a hierarchical view of the point cloud of a
standing tree, this research proposed the concept of the height cumulative percentage (Hz%) of
the point cloud to study the association of Hz% with other important forest resource parameters,
such as the stem volume.

Hz% represents the cumulative total height (z%) of all points in the cloud at a lower or equal
height. Before calculating Hz%, the point cloud of each individual tree should be normalized
(with the DEM as the ground datum) and then sorted according to each point’s height.
MATLAB 2014a was used to process the data and to calculate Hz% based on Eqs. (2) and (3):

EQ-TARGET;temp:intralink-;e002;116;422Hz ¼ hm; (2)

EQ-TARGET;temp:intralink-;e003;116;379z% ¼
P

m
i¼1ðh1þ h2þ h3þ h4þ : : : þ hiÞP
n
i¼1ðh1þ h2þ h3þ h4þ : : : þ hiÞ × 100%; (3)

where n is the total number of points for the point cloud of a tree and hi is the height of point i.
m denotes the number of points, in which Eq. (8) is balanced, and hm is assigned to Hz%. Taking
the tree in Fig. 2 as an example, the total number of data points in the point cloud is 189,648, and
the summed height of all points is 2,269,368 m. The height hm of point m is 25.28 m, which
accounts for 75% of the total cumulative height; therefore, H75 ¼ hm ¼ 25.28 m.

Other hierarchical features of the point cloud, such as the mean height (Ht mean), standard
deviation of the height (Ht std dev), variance of the point cloud height (Ht var), quartile of the
height (Ht IQ), average absolute deviation (AAD) of the height and median absolute deviation
(MAD) from the median height, were also extracted as candidate variables for the subsequent
stem volume regression (Table 1).

Among these characteristic variables, they are AAD ¼
P

n
i¼1

ðjhi−hjÞ
N , Ht stddev ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N−1

P
n
i¼1 ðhi − hÞ2

q
, and HtVar ¼

P
n
i¼1

ðhi−hÞ2
n (where n is the number of points in the point

cloud of a tree, hi is the height of point I, and h is the mean height of all points).

2.2.3 Extracted diameters at various heights

Circle or cylinder fitting have most commonly been used for deriving DBH estimates from TLS.1

Based on the single tree point data, 3D point cloud data were converted into two-dimensional
point cloud data; then the least squares method was used to fit each circle to extract the diameter
at a specific height. Figures 3(a) and 3(b) show that the data pertaining to single trees were sliced.
Excessively thin slices of point cloud data will result in insufficient data for calculating the diam-
eter, whereas overly thick slices will reduce the extraction efficiency.9 This study controlled the
slice thickness at 0.1 m. Rings were sliced at intervals of 1 m from bottom through the trunk,
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as shown in Fig. 3(b). Then the least square method was used to fit the diameter of the upper part
of the stem. Detail method can be found in related research.1,9

2.2.4 Obtaining the volume of each tree

Through the method mentioned above, the research obtained three stages of point clouds of each
tree along the tree height. The area segment quadrature method was used to calculate the stand-
ing timber volume of the central section of each tree.19 According to the previous step, the central
diameter of each segment was extracted, using the cylinder volume formula to calculate volume.
The remaining segment (<2 m) was treated as the tip of the tree, using the cone volume formula
to calculate volume. The stem volume of each Chinese tulip tree (L. chinense) in the sample plot
could be calculated with Eq. (6):

EQ-TARGET;temp:intralink-;e004;116;98V ¼ l
Xn
i¼1

gi þ
1

3
g 0l 0; (4)

Fig. 2 Example of the height cumulative percentage (Hz%).

Table 1 Point cloud characteristic variables.

Characteristic
variable Description

Ht mean Average height of the cloud point above the ground

Ht std dev Standard deviation of the point cloud height

Ht var Variance of the point cloud height

Ht IQ Quartile distance of the point cloud height

AAD Average absolute deviation

MAD median Median absolute deviation from the overall median
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where V is the stem volume, gi is the cross-sectional area of each segment, l is the length of the
segment, g 0 is the cross-sectional area of the tip, l 0 is the length of the tip, and n is the number of
segments.

2.3 Modeling and Verification

To find the most suitable parameters for the volume model, the linear equation form shown
in Eq. (5) was employed. According to the number of selected parameters, the formula was
extended to obtain a unary primary volume model and a binary primary volume model.20 Hence,
three types of models were established. First, Hz% and DBH were taken as variables to conduct
the modeling. Second, volume modeling was carried out by taking Hz% as the lone variable.
Third, Hz% and other hierarchical features were modeled as variables:

EQ-TARGET;temp:intralink-;e005;116;271V ¼ a0 þ a1x1 þ a2x2þ · · · þajxj; j ¼ 1: : : m: (5)

Pearson’s correlation coefficient (P) was calculated between each extracted feature parameter
and volume (V). Feature parameters with a P value larger than 0.6 were selected and used as
candidate variables for the volume model.6 The parameters were calculated using the multivari-
ate stepwise regression of SPSS19 software, where the significance level of the model param-
eters was set as 0.05, and the equations with high collinearity were eliminated using the variance
inflation factor (i.e., VIF > 10) variable using the VIF.

Then the binary volume equation19 was applied as a reference model [Eq. (6)] to establish
the volume model based on the regression relationship between the DBH and tree height. This
model reflects that certain stem characteristics have extensive regional applicability. DPS 17.1
software was used for the modeling and parameter estimation:

EQ-TARGET;temp:intralink-;e006;116;119V ¼ a0ðDBHÞa1ðHÞa2 ; (6)

where V is the volume value, ai denotes the coefficients, and xi represents the independent
variables of the equation.

Fig 3 Extract upper diameter for a single tree: (a) tree trunk constituted by point cloud and (b) circle
fitting for upper diameter.
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To evaluate and verify the models, the coefficient of determination (R2), root-mean-square
error (RMSE), and F value were utilized as the evaluation indices for the model. The compu-
tation equations are as follows:

EQ-TARGET;temp:intralink-;e007;116;699R2 ¼ 1 −
P

n
i¼1ðyi − ŷiÞ2P
n
i¼1 ðyi − yiÞ2

; i ¼ 1; : : : ; n; (7)

EQ-TARGET;temp:intralink-;e008;116;641RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðn − 1Þ
Xn
i¼1

ðyi − ŷiÞ2;
s

(8)

EQ-TARGET;temp:intralink-;e009;116;599F ¼
P

n
i¼1 ðŷi − yiÞ2

m

�P
n
i¼1 ðyi − ŷiÞ2
n −m − 1

: (9)

In the above equations, yi is the measured value, yi is the measured mean value, ŷi is the value
predicted by the model, n is the number of samples, and m is the number of parameters in the
equation.

The 10-fold cross-validation method was used to verify the prediction effect of the model. All
individual tree data used for the modeling were randomly divided into n subsamples under the
condition that the prediction model parameters had already been determined. One subsample
was randomly selected as verification data (to be used in the subsequent fitting model for val-
idation), whereas the remaining (n − 1) samples were used for training. The results were verified
with 10 iterations, each subsample was validated once, and the mean value of n results was
obtained as the estimated value of the model.20 The prediction accuracy of the model was veri-
fied by building a scatter plot between the estimated values of the model and the TLS-extracted
values.

Dynamic changes in the volume of the Chinese tulip tree were analyzed based on the data
from the three periods. The volume of stumpage in the three periods was acquired using the
characteristic parameter volume prediction model, and the dynamic change in the volume was
calculated according to the diameter classes. The changes were compared with the actual volume
change computed by the point cloud, and the feasibility of applying the inverted volume pre-
diction model to analyze the dynamic changes in timber volume was evaluated.

3 Results and Analysis

3.1 Verification of the Extraction with Stem Analysis

First, the extraction of the upper diameter should be confirmed. Data from the two sample trees
are shown in Fig. 4 in a scatter plot of the upper diameters extracted from the point cloud and
the corresponding diameters of the two trees. The extracted values have a high correlation
(R2 ¼ 0.9864) with the manually measured values and show no significant difference.
Accordingly, the following features extracted from the point cloud can be researched.

Then data from the stem analysis were used to draw the taper curves as shown in Figs. 5(c)
and 5(f). The tree trunk curves of the upper diameters provided by TLS point clouds are similar
to those of the two sample trees [Figs. 5(b) and 5(e)]. Tree heights of 10 to 20 m represent the
inflection points of the tree trunk. Hz% clearly increases with increasing height and reaches
∼10 m of the tree height at H25%, which appears to be an inflection point; then Hz% reaches
∼20 m of the tree height at the value of H50% [Figs. 5(a) and 5(d)], which appears to be another
inflection point and is followed by a gentle increasing trend for Hz%.

3.2 Features Extracted from the Point Cloud Data at Three Stages

Following the methods above, this research extracted the tree structure parameters (DBH and tree
height) and hierarchical features (Hz% and Hmean) and counted the volume of each standing
tree at all three stages. A summary of the stumpage features after normalization, denoising,
extraction, and calculation is shown in Table 2. The average DBH of a single tree increased
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significantly, and the average annual growth was stable at 0.3 cm. The standard deviation of
DBH growth was large: 5.95 in 2014, 6.49 in 2018, and 7.66 in 2019. The tree height and volume
also increased annually. The average heights of H75, H55, and H25, which refer to the spatial
distribution of tree trunks from top to bottom, decreased annually in accordance with the law
of tree growth.

3.3 Volume Modeling Results

A Pearson correlation analysis was conducted on individual trees, and the relationships between
the tree height, DBH, and hierarchical features with the tree volume determined by the point
cloud data are shown in Table 3. According to the values from the point cloud data in the three

Fig. 4 Scatter plot of simple linear regression result for extracted diameters and manually mea-
sured diameters.

Fig. 5 Comparative analysis of high accumulative percentile and analytical wood stem curve:
(a), (d) Hz − H; (b), (e) point cloud stem curve; and (c), (f) stem analysis curve.
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periods, the DBH has the highest correlation with the tree volume, followed by the tree height,
which conforms to the rule regarding the three elements of volume. Among the correlations
between the hierarchical features and the tree volume, the highest correlation parameter in
2014 was H25 and then H50; the highest correlation parameter in 2018 was H25 and then
H50; and the highest correlation parameter in 2019 was H80 and then H75. The various param-
eters involved in modeling the individual tree volume are listed in Table 4.

Thus the volume model was established using the hierarchical features, DBH and tree height
as variables. The model results are shown in Table 4. Among them, the binary volume models

Table 2 Summary of features of a single tree in the three periods.

Period
DBH
(cm)

Tree
height (m)

Volume
(m3) H75 H50 H25 Hmean

2014 Range 14.21 to
42.58

17.11 to
32.40

0.13 to
1.75

11.98 to
29.72

18.96 to
26.84

14.18 to
20.13

1.84 to
26.64

Mean value 25.96 28.30 0.69 24.51 20.51 11.44 15.65

Standard deviation 5.95 3.52 0.36 11.45 7.76 3.56 8.88

2018 Range 15.21 to
45.04

17.53 to
34.32

0.14 to
1.96

12.59 to
30.79

7.75 to
27.99

4.98 to
19.57

4.09 to
28.70

Mean value 27.52 29.73 0.77 23.49 18.53 9.41 16.61

Standard deviation 6.49 3.93 0.40 12.1 7.51 2.93 9.24

2019 Range 15.83 to
45.61

17.67 to
35.00

0.15 to
1.98

9.22 to
22.02

7.22 to
17.07

2.92 to
8.96

2.71 to
26.33

Mean value 27.87 30.12 0.80 15.29 10.47 5.55 10.93

Standard deviation 7.66 4.08 0.44 3.02 5.32 10.08 12.73

Table 3 Correlation analysis of individual plant parameters and volume.

2014 2018 2019

Parameter Correlation Parameter Correlation Parameter Correlation

Structure
parameters

DBH 0.9679 DBH 0.9679 DBH 0.9462

Tree height 0.6894 Tree height 0.4949 Tree height 0.7170

Hierarchical
features

H25 0.8662 H25 0.7676 H80 0.7777

H50 0.8424 H50 0.7654 H75 0.7618

Ht IQ 0.8385 Ht IQ 0.7561 Ht stddev 0.7170

AAD 0.8363 AAD 0.7449 H50 0.6500

Ht mean 0.8300 Ht mean 0.7409 AAD 0.6289

Ht var 0.8276 Ht var 0.7241 Ht var 0.5055

Ht stddev 0.8118 Ht stddev 0.6587 MAD median 0.4967

H75 0.7674 H75 0.6487 Ht mean 0.2973

MADmedian 0.7561 MAD median 0.6360 Ht IQ 0.2849

H80 0.7527 H80 0.5915 H25 0.1615
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(with H and DBH as variables) are used as reference models and have the highest R2 values
(0.974, 0.974, and 0.919, respectively). After screening all the hierarchical features models, the
three types of models with the best fitting effect are retained in Table 4, result shows that the
models with hierarchical features (H25, H50, H80, and H75) have better R2 values (0.951, 0.957,
and 0.901). For predicting volume, model with H25 is the best in this research. As shows in
Fig. 5, that H25 is the first inflection point along the trunk, revealing the efficacy of Hz%.

Models 14-2, 18-2, and 19-2 are used to predict the individual tree volume, and scatter plots
that show the correlations between the model-predicted values and TLS values of the single tree
volume in all three periods are drawn [Figs. 6(a)–6(c)]. The plots reveal the precision of the
models, which have relatively high R2 values for 2019 (0.9603), 2018 (0.9501), and 2014
(0.949). All of the prediction lines are somewhat in accordance with the 1:1 verification line.
Significant differences are not observed between the predicted and point cloud-extracted
volumes. Therefore, the volume model with hierarchical parameters can be used as the volume
model for each period.

Then the volume was counted for each DBH grade in each period, and the results are shown
in Table 5. According to the previous steps, the volume of each tree was counted by the area
segment quadrature method for the central section through the extracted point cloud data.

Table 4 Results of the volume model for individual trees.

Time Models no. Parameter and coefficient R2 F value RMSE (m3)

2014 14-1 v ¼ 0.106ðDBHÞ2.035ðHÞ1.352 0.974 122.419 0.059

14-2 v ¼ −0.795þ 0.021ðH25Þ þ 4.847ðDBHÞ 0.951 570.604 0.083

14-3 v ¼ −0.617þ 0.073ðH50Þ − 0.002ðH80Þ 0.707 69.961 0.199

14-4 v ¼ −0.747þ 0.128ðH75Þ − 0.062ðH80Þ 0.612 45.690 0.229

2018 18-1 v ¼ 0.247ðDBHÞ2.018ðHÞ1.075 0.974 140.053 0.066

18-2 v ¼ −0.928þ 5.655ðH25Þ þ 0.016ðDBHÞ 0.957 661.538 0.086

18-3 v ¼ −0.699þ 0.051ðH50Þ þ 0.025ðH80Þ 0.712 72.799 0.219

18-4 v ¼ −0.872þ 0.618ðH75Þ þ 0.009ðH80Þ 0.642 52.983 0.244

2019 19-1 v ¼ 0.734ðDBHÞ2.002ðHÞ0.734 0.919 288.254 0.039

19-2 v ¼ 0.062þ 0.092ðH25Þ þ 0.732ðDBHÞ 0.901 233.182 0.140

19-3 v ¼ 0.494þ 0.011ðH75Þ þ 0.008ðH85Þ 0.632 28.642 0.274

19-4 v ¼ −1.147 − 0.034ðH50Þ þ 0.156ðH80Þ 0.638 29.393 0.272

Fig. 6 Scatter plots of the correlation between the volume model-predicted volume and TLS-
extracted volume: (a) formula 2014-2, (b) formula 2018-2, and (c) formula 2019-2.
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The scatter plot in Fig. 7 shows the variations in the modeled and TLS-extracted volumes. The
linear relationship of the volume changes in the DBH grades between the modeled values and
the values extracted from the point cloud was established and determined to have an intercept
of −0.081, a slope of 1.14, and an R2 of 0.98 (as shown in Fig. 7).

3.4 Dynamic Analysis of the Tree Structure from Features

3.4.1 Individual tree changes and the growth rate

Table 6 displays the individual changes in and growth rates of the tree height, DBH, and tree
volume in the three phases. Since the investigated periods spanned 4 years and 1 year, the growth
rates are distinguished as 4-years and 1-year rates. The average rates of change among the three
phases are as follows: tree height average growth rate of 0.36 to 0.39 m; DBH average growth
rate of 0.34 to 0.38 cm; and volume average growth rate of 0.02 to 0.03 m3. Among these rates,

Table 5 Volume variations in DBH grades from 2014 to 2019.

Diameter
grade
(cm)

Number of
diameter grade

Model-2
prediction (m3)

Volume change
2018 to 2014 (m3)

Volume change
2019 to 2018 (m3)

2014 2018 2019 2014 2018 2019 Model -2
TLS

measurement Model-2
TLS

measurement

10 2 0 0 0.32 0.00 0.00 −0.32 −0.29 0.00 0.00

15 10 9 8 2.76 2.06 1.92 −0.70 −0.44 −0.11 −0.12

20 13 9 8 7.36 5.81 5.35 −1.55 −2.41 −0.46 −0.78

25 19 15 14 15.28 13.59 12.78 −1.69 −2.03 −0.81 −0.49

30 13 18 15 15.34 21.47 22.67 6.13 6.97 1.20 1.53

35 2 3 8 3.61 6.34 8.11 2.73 2.88 1.77 1.30

40 1 0 1 1.14 0.00 1.60 −1.14 −1.75 1.60 1.65

45 0 1 1 0.00 1.40 1.73 1.40 1.96 0.33 0.31

Fig. 7 Linear relationship between the modeled volume and the point cloud-extracted volume.
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the average growth rate of the tree height is greater than the average growth rate in the 4-year
period of 2014 to 2018. Moreover, the volume growth rates in all three periods are relatively
average.

The variations in the diameter grades of the sample plot during the three periods are shown in
Fig. 8. The diameter step was 5 cm, and the initial diameter class was set to 5 cm. As the number
of trees was counted by diameter class, the peak of the diameter distribution curve shifted from
25 cm in 2014 to 30 cm in 2018. Among the diameter classes, the shifted numbers of the 20- and
25-cm diameter classes were relatively high.

3.4.2 Height cumulative percentage analysis

As shown in Fig. 9, the average Hz% of individual trees increases with the height in all three
periods, with the first inflection point appearing at 25% (the height of the tree is ∼10 m) with
Hz% ¼ 10 m. The second inflection point appears at 55% (the height of the tree is ∼20 m), with
Hz% ¼ 20 m. These results indicate that the hierarchical features can reflect the change in the
stem shape, and these features appear regularly within all 5 years. The height cumulative per-
centages of 25% and 55% for the Chinese tulip (L. chinense) tree are the two inflection points for
standing trees. As evidenced, the cumulative height percentage of the point cloud can reflect the
change in the stem shape. The results of early studies in this study area showed that the stem
shape of Liriodendron chinense varied greatly at different ages, which was mainly affected by
the completeness of tree crown. The results show that 20 years is the optimal age for early selec-
tion of Liriodendron chinense.21 In order to improve trunk shape and increase stand volume per
unit area, it is necessary to carry out timely monitoring.

A comparison with Fig. 6 shows the Hz% and stem shape variations, and the hierarchical
feature clearly reflects the variation in the stem shape from the point cloud distribution with
the tree height. Furthermore, 25% of Hz% is consistent with the periscope height.

Table 6 Growth rates of the features for individual trees in the three periods.

2014 to 2018 2018 to 2019 2014 to 2019

Growth
rate in
4 years

Average
growth
rate

Growth
rate in
1 year

Average
growth
rate

Growth
rate in
5 years

Average
growth
rate

Tree height (m) 1.43 0.36 0.39 0.39 1.82 0.36

DBH (cm) 1.57 0.39 0.34 0.34 1.91 0.38

Volume (m3) 0.08 0.02 0.03 0.03 0.11 0.02

Fig. 8 Diameter grade distribution curves for 2014, 2018, and 2019.
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4 Discussion

As the use of TLS for dynamic monitoring of forest growth has increased, new challenges are
arising in order to make the best use of the most detailed and accurate 3D forest data.22,23 From
a hierarchical view of the point cloud of a standing tree, this research proposed the concept of
the height cumulative percentage (Hz%) to study the association of Hz% with the stem volume.
Through this parameter, structural variability can be quantified quickly and effectively, which
then can provide the basis for forest planning and assessment of treatment impacts. Hz% was
verified through stem analysis data as show in Fig. 6. The values of these parameters changed
with the growth characteristics, the tree height, and upper diameter. Then we studied the potential
of TLS by estimating the volume of L. chinense in the study area using point cloud hierarchical
parameters. Table 3 lists the correlations of these characteristic parameters in the data from three
periods and shows that among the parameters,H50 andH25 were mostly correlated with volume.
Table 5 shows the volume models. The accuracies of models 14-2, 18-2, and 19-2 were improved
by adding height cumulative percentage (Hz%) with the DBH factor (Table 4).

This research was inspired by the single-scan TLS case study23 but improved with a multi-
ple-scan to obtain point cloud fully representing the tree trunk, thus to make it possible to study
stem volume. As long as the HZ value is calculated, the change of the trunk shape can be
reflected, and the next step of volume modeling can be carried out. Although the volume func-
tions show less accurate than the DBH-H model but still acceptable compared with volume
counted through point cloud with segment volume accumulations (Fig. 6), the estimation of
volume variation also shows high accuracy (Fig. 7). Compared with other empirically based
volume models, TLS derived allometric volume (with R2 ¼ 0.94).24 It confirmed that the
changes in height-specific diameters and h are the most important factors when determining
the increment in stem volume.7 Certainly, Hz% only describes the distribution of point cloud
from the vertical level, whereas some old-growth stands have the highest horizontal structure
variability.23 If there are parameters of the horizontal distribution structure, the volume model
accuracy will be improved. This is also part of our on-going research, and new horizontal
distribution indicators are being studied.

Repeated TLS data acquisition requires careful planning for ensuring point clouds with com-
parable quality.25 The type of sensor used to acquire data to study the growth of trees and forest
stands has changed as technology advanced, and the comparison of data sets can be difficult due
to differences in the sensor type used.15 This study attempts to solve the problem of multi-sensor

Fig. 9 Average Hz% for individual trees in three periods.
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data sources. The Leica equipment used in the first phase of the scan, with its high-precision
settings and multi-site scanning with three bidirectional targets, was time-consuming. The latter
two phases of scanning updated the equipment, eliminating the target, and reducing a lot of field
work. However, the data processing was still very complicated, especially the extraction and
calculation of the upper diameter of a single plant was time-consuming. The above-mentioned
point cloud hierarchy parameters hopefully solve these problems. After registration, denoising,
and normalization, the point cloud data of the three phases were uniformly distributed, and the
order of magnitude of the point cloud was similar, with total points 19,211,863 in 2014,
19,774,289 in 2018, and 19,509,890 in 2019.Hz% parameter reflects the hierarchical distribution
of point clouds, and unit differences among multi-phase point clouds were removed by ratio
calculation. At the same time, this parameter reflects the distribution of the upper diameter
on the height of the tree, which is the integration of the three elements of volume. Whether
this feature can reveal the trunk shape and whether Hz% is related to the planting density and
species characteristics are worthy of further discussion. Hz% could also be discussed as a new
parameter that can be obtained by laser scanning technology. We have tried to apply this param-
eter into different tree species, various stand management methods, and management densities
and hope to investigate the parameter more specifically in the next paper.

Our research confirmed that TLS and explicit tree modeling show high potential for accurate
stem volume estimation.26,27 Currently, airborne or unmanned aerial laser [airborne laser scan
(ALS)] has the advantage of obtaining precise canopy point clouds, which has been confirmed in
many studies.28,22 However, in forest resource monitoring, fusion of LiDAR data from terrestrial
with different platforms and the use of fused point clouds has only been marginally explored.29

As Calders pointed out that co-registration of multi-source point clouds will be critical but can be
achieved if enough common objects are presented to act as tie-points.30–33 It is a new idea to find
the appropriate relationship from the vertical hierarchical distribution parameters of the tree-
trunk point cloud. Many studies have demonstrated that laser scanning data have an advantage
in obtaining tree height27 and that ALS waveform can be converted into the corresponding can-
opy height contour; thus the height of each quantile can be calculated analogously in a sample
canopy profile of the ground.32 Photogrammetry can also achieve the same data distribution.3

Therefore, whether vertical hierarchical parameters can be used as fusion features for multi-
source point cloud data are worthy of further discussion.

5 Conclusion

The structure of standing tree could be derived from TLS collected point cloud data, and a
dynamic analysis could be performed through modeling with hierarchical features. The de-
scribed research in this paper proposed a new parameter, the height cumulative percentage
(Hz%), which is used to express the cumulative height of the first m points (from the bottom
up to the first point) divided by all heights equal to Z% m points, with the first m point heights
representing the Z% ofH of the point cloud. TheHz% value is closely related to the characteristic
stumpage parameters and could be used to represent the dynamic forest structure. The results of
this study contribute to the further development of TLS-based modeling and estimation methods
for individual tree and forest growth, thereby improving the accuracy of forest inventories
estimation and providing better tools for decision-making processes.
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