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Abstract. This research presents an evaluation of the accuracy and uncertainty of estimates
of river discharge made using satellite observed data sources as input to a modified form of
Manning’s equation. Conventional U.S. Geological Survey (USGS) streamflow gaging station
data and in-situ measurements of width, depth, height, slope, discharge, and velocity from
30 USGS gage sites were used as ground-truth to assess accuracy. This study explores accuracy
in relation to the amount of ground truth information available, the number of calibration points
available, and the accuracy of the input data. This research indicates that remotely sensed dis-
charge estimates associated with the modified Manning equation may be expected to have an
uncertainty in range of 10% overall given a sufficient number of calibration points. The uncer-
tainty associated with the modified Manning algorithm increased markedly for depths <3 meters

(m) and for discharges <1000 cubic meters per second (m3∕s) for many rivers after calibration.
Rivers that exhibit (1) a wide range of flow conditions, (2) a significant number of dams in the
watershed and along the channel, and (3) a high baseflow index are more likely to have relatively
large errors overall and particularly at the low end of the streamflow range. Uncertainty in
remotely sensed measurements of water-surface elevation (WSE) and width in the expected range
(WSE, þ∕ − 10 cm; Width,þ∕ − 15 m) introduces uncertainty in the discharge estimates on the
order of 10% and is greatest at the low end of discharge as rivers get shallower and narrower. As
WSE and width measurement uncertainty increases, discharge uncertainty increases accordingly.
In general, the observation errors are greater than the errors associated with the algorithm for a
well-calibrated model (e.g., 20 calibration points).© The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.17.014520]
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1 Introduction

There has been considerable interest in recent years in using observations from remote platforms
to observe and track water fluxes in rivers on a global scale. The U.S. Geological Survey
(USGS), National Aeronautics and Space Administration (NASA), and other agencies around
the world are working toward using satellite observations of water-surface height and width,
often combined with hydrologic and hydraulic modeling, to estimate discharge in rivers inde-
pendent of permanent ground-based streamgages. Additionally, remote sensing of river height,
width, and discharge could contribute considerably to the calibration and validation of hydro-
logic models.1,2 The NASA Surface Water and Ocean Topography mission (SWOT), which was
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launched in December 2022, will provide unprecedented observational coverage of water surface
widths, heights, and slopes in rivers, lakes, and wetlands across the globe with repeat observa-
tions of 21 days or less.3,4

Uncertainties arise from the type of flow model used to compute discharge, the ability to
predict the parameters of that model, and the uncertainties in the observational data used in
the model. Uncertainties associated with conventional ground-based discharge gaging stations,
which correlate water-surface elevation (WSE) with discharge (Q), have been assessed by Kiang
et al.5 In general, they observed that even with robust calibration, the assumption that there is
a one-to-one (monotonic or kinematic) relation between water level and discharge results in
some uncertainty. Kiang et al.5 also considered the effect of smoothing to construct a kinematic
rating curve between WSE and Q on overall uncertainty in the estimates of Q.

Recent efforts have accelerated the diversification of approaches for estimating discharge
from remote platforms due to improvements in satellite sensors (both radars and optical) that
observe water bodies more accurately with increased spatial and temporal coverage. The impor-
tance of understanding the uncertainty for both uncalibrated and partly calibrated (using prior
information) methods is considered for algorithms used to translate remote observations to dis-
charge. For example, Gleason and Smith6 showed that observations of width alone, in the context
of reach scale hydraulic geometry, can be used to estimate discharge with <30% root mean
squared error (RMSE) in a number of rivers.

Birkinshaw et al.7,8 demonstrated that satellite-derived WSE (stage), slope, and width can be
used to estimate discharge between gaged locations when the gage discharge is a boundary con-
dition, or a suitable reference depth is derived from limited discharge information. Durand et al.9

used inverse modeling techniques to estimate discharge in the River Severn, United Kingdom,
via a physically-based flow resistance equation with initial estimates of the unknown parameters,
including bottom depth and a flow resistance coefficient. Similarly, Garambois and Monnier10

applied inverse methods and remote observations of river surface features to estimate various
hydraulic properties of the river flow in the Garonne River, France. Both methods produced
estimates within 15% of observed discharge for the particular river of interest.

Further investigations by Durand et al.11 and Bonnema et al.12 incorporated modeled river
data as a proxy for satellite observations to test various uncalibrated physically-based and quasi-
physically-based discharge algorithms in a set of rivers in the United States and France, and in
the Ganges-Brahmaputra, India. They included modeled water-surface area of the river to pro-
vide a reach average width, and the stage for the water-surface along the reach to provide surface
slope and change in flow depth. The discharge algorithms tested in Durand et al.11 and Bonnema
et al.12 vary in accuracy depending on river and reach, and the results were within about 10%
RMSE in some cases. A more extensive application of an uncalibrated remote sensing-based
width-discharge rating algorithm, where width is estimated from Landsat and is calibrated with
modeled river discharge estimates, was tested against 456 ground-based gaging stations,13 find-
ing a median Kling–Gupta efficiencies (KGEs) of 0.3.

The previous discussion focused on studies that estimated dischargewith little or no calibration
of the algorithm parameters; however, the test cases were limited primarily to a small set of mod-
eled river discharge and in some cases used prior information on the state of the river to provide
partial calibration. Frasson et al.,14 evaluated sources of error and the expected accuracy of SWOT-
based estimates of discharge, concluding that the primary sources of error come from parameter
uncertainty in the discharge algorithm and that these uncertainties are linked to hydraulic and
geomorphologic variability and bias associated with prior information used to constrain the esti-
mates. Bjerklie et al.15 estimated discharge in the Yukon River at two locations in Alaska using
only observations of the river channel with mean accuracy better than 20% without calibration and
better than 5%with calibration, indicating that the simplified flow law (discharge equation) central
to the algorithm had an accuracy on the order of 5%. Additionally, this analysis does not address
overbank (flood) discharge estimates. Overbank flow is often defined by complex landscapes that
might include urban, forest, wetland, meadows, and agricultural lands, as well as combined level
and steep mountain terrain. As such, the difficulty of evaluating and estimating flow during floods
may be increased considerably and is of necessity left as a separate future study.

Satellite remote sensing of the water surface height, width, and slope of rivers enables exten-
sive spatial coverage across the globe and the possibility of dense temporal coverage through
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the use of multiple satellite platforms. Given the global spatial coverage as many as 200,000 river
reaches will be observed (SWOT River Products | NASA SWOT). However, only a small
fraction of these rivers will have ground-based gaging stations that can be used to calibrate the
observations to estimate discharge, indicating that extensive river discharge estimates from the
majority of river reaches will not have the luxury of calibration measurements and will effec-
tively have an unknown accuracy. This paper presents a review of the accuracy of a calibrated
model that is based on a generalized flow resistance model for a range of rivers that is inde-
pendent of limitations of satellite observations and prior hydrologic information.16 This is
accomplished by assuming a best-case scenario where ground measurements are available,
leaving model accuracy as the primary component of expected error. Additionally, the calibrated
models provide a glimpse into the range of error that might be expected across varying river size,
morphology, and hydrologic setting such that inferences might be made at similar uncalibrated
locations.

The limited studies conducted to date provide some indication of the accuracy that might be
expected from remote sensing-based estimates of discharge. However, the general accuracy
parsed according to the sources of error and evaluation of the error distribution across the range
of discharge for a large number of rivers has not been undertaken and is not currently understood.
A robust assessment of the accuracy includes those of the observations themselves, the
supporting information and modeling assumptions, and the parameters used in the algorithm.
Additionally, it is imperative to understand how error varies across the entire flow regime to
aid in application of the remote sensing-based estimates.

The accuracy of remote sensing discharge (RSQ) estimates for any given river reach can only
be assessed relative to discharge and other hydraulic information directly measured or developed
from a conventional ground-based streamgaging rating curve (i.e. “ground-truth”) despite
acknowledged uncertainties with these measurements.5,17 Ideally, such an assessment would use
enough ground-truth information to provide a reasonable estimate of accuracy that would be
expected to hold for future estimates provided conditions do not change significantly. In the
case of remote sensing of discharge, the ability to assess accuracy from ground truth for most
river reaches where estimates are being made is not possible due to the large number of river
reaches being observed compared to the number of streamgages where ground-truth data are
available. Complicating the assessment of accuracy is the fact that it may vary depending on
the magnitude of flow being estimated—the accuracy at low flows may be quite different than
the accuracy for mean flow, higher flows, and especially overbank floods. Additionally, the accu-
racy of the ground-truth data may be important to consider. For most cases, ground-truth data
sets derived from hydraulic models pose additional potential for increased uncertainty and
require an evaluation of the parameters used to calibrate them.11

This paper evaluates the accuracy and limitations of the same flow law used by Bjerklie
et al.15 but for a larger set of rivers. The analysis is designed to evaluate uncertainty due to the
limitations of the discharge flow law (modified Manning equation) separately from the uncer-
tainty of the measurements used in computing river discharge using satellite (and other) remotely
observed data sources (RSQ). Conventional USGS streamflow gaging station data and direct
measurements of width, depth, height, slope, discharge, and velocity from 30 USGS gage sites
were used as ground-truth to assess accuracy (Table 1). This study also explored accuracy in
relation to the amount of ground truth information available for comparison as well as exami-
nation of factors known to improve the expected accuracy including the river morphology, the
number of calibration data available, and the accuracy of the input data.

1.1 Background

Observations of river dynamics from remote (satellites, aerial, and bankside) platforms involve
the direct measurement of water-surface area, which when divided by reach length yields reach-
averaged width, as well as the WSE (or stage) along the reach (relative to a known datum). These
measurements are made either at a prescribed section (in the case of bankside or aerial mounted
instruments, or satellite nadir tracks) or as a reach average (in the case of satellite or aerial
mounted swath instruments). Reach measurements of water-surface height can also yield
water-surface slope. Observations of width and height are currently being measured routinely
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from various imaging and nadir pointing altimetric satellites, although not concurrently. The
NASA/CNES/CSA/UKSA SWOT wide-swath altimeter mission launched December 2022,4

will concurrently measure both water-surface width, height, and slope. Fujita et al.,20 Kääb
et al.,21 and Legleiter and Kinzel22 have demonstrated that surface velocity in some rivers can
be measured from satellite platforms by tracking ice floes and turbulent irregularities in the flow,
however, widespread routine measurements of velocity from satellites are not expected in the
near future.

The tracking of river dynamics and discharge from remote platforms rely on width and stage
observations, coupled with limited in-situ (ground-based) observations to develop time-series
data with intervals between observations on the scale of days to weeks.23–32 More recently,
Refs. 9, 11, and 12 have developed discharge algorithms designed to apply observations of
width, stage, and slope observations from the SWOTmission. Limited field observations provide
ground truth information for calibration and accuracy assessment of remotely sensed estimates
of discharge (RSQ). Alternatively, modeled river flows also may serve as points of calibration
(for example from global hydrologic models as reported in the global reach-scale a-priori
discharge estimates for SWOT (GRADES) website.33

The selection of the river reach is an important consideration in the accuracy and uncertainty
of remote sensing-based discharge estimates because of the role the geometry of the channel
reach plays in the energy slope and in the flow resistance. The measurement data used in this
study were all collected at individual cross-sections within a reach that is not defined. As such,
the reach characteristics are not included as part of the evaluation. In many remote sensing-based
applications to rivers, the river reach is also not considered because it is defined by the orbital
crossings rather than by physical attributes of the reach. In any case, Frasson et al.16 have shown
that over longer reaches (5 to 15 km) errors in satellite observed width, height, and slope are
reduced, indicating that over these reach lengths, estimate accuracy is likely to be better than over
shorter reaches. Additionally, channel morphology characteristics that reflect river hydraulic
conditions24,34 can better be defined over longer reaches.

The goal of the RSQ methodology presented in this paper is to estimate discharge using an
approach that incorporates the use of in-situ information as much as practicable. Even small
amounts of in-situ information can provide the means to constrain unknown parameters to
minimize the degrees of freedom available for calibration. RSQ estimates presented herein are
developed for in-bank flow conditions and strive to represent the mean hydraulic conditions in
the channel (mean depth and velocity). Overbank flood flow accuracy is not addressed.

Inherent limitations in flow-law-based discharge estimation methods include the use of
a continuous representation of flow resistance within a flow resistance equation such as the
Manning equation. These methods rely on the assumption that flow resistance is a linear func-
tion of observed variables and that the flow is contained within a defined channel. Additionally,
the remote discharge estimates are limited to in-bank flow, periods of no ice cover and
obstructing clouds, and to river widths >50 m if using satellite imagery. The observational
record is also constrained by the revisit period and the distance between the ground paths traced
out by the satellite orbit. These latter two limitations in most cases will limit repeat observa-
tions to several days and several kilometers (km) at best. These constraints require that the
discharge estimates are independent of one another, and therefore do not assume continuity
between observations in time or space and do not rely on transient or routing-based flow
computations.

The remote sensing capabilities include observations of the river width and the river height.
Validation studies for both observed variables have been conducted at many locations using
different instruments mounted on various satellite platforms25–27,31,35–42 and these have provided
first-order expected observations accuracies. Along with these studies, the spatial (x, y, and z
coordinates) accuracies are generally reported based on the specifications of the observing
instruments, including discussion of factors that may reduce accuracy. Recently, observations
of water-surface height in rivers (and other water bodies) derived from the multi-agency Jason-2
and Jason-3 satellite altimeter missions provide an estimate of observational error. These esti-
mates are based on qualitative characteristics of the target as well as atmospheric and instrument
conditions and responses. As such, they are not precise errors but rather are a first order of
an expected error that is quantitative, based on characteristics of the observation.43
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1.2 Ground Truth Data

The ground truth information used to evaluate the remote sensing estimates includes direct
measurements of discharge, water-surface height, water velocity, and water depth in river
cross-sections, and the rating curve produced by relating the measured water-surface height to
the discharge. These direct measurements are considered to be the best available truth set with
the following qualifiers and caveats.

Measurement of water-surface height at USGS streamgages adheres to a rigorous accuracy
standard (0.3 cm).44 When ice is covering the water-surface, stage may be affected and ice
corrections applied. Water velocity and depth in the cross-section is measured using acoustic
doppler current profiler (ADCP) technology in most cases. The accuracy of these measurements
depends on the operation checks on the equipment, flow conditions during the measurement,
and operator skill. The depth and velocity measurements are made across the channel in a more
or less continuous flow field, with width measured perpendicular to the direction of flow. The
measurement accounts for lateral and vertical flow to derive a mean flow in the downstream
direction.

The discharge is computed from the velocity-depth flow field as the product of mean depth,
velocity, and width. The USGS rates the discharge measured as poor, fair, good, or excellent
based on the quality of the measurement conditions and equipment operation. In general, it is
assumed that a poor measurement has an accuracy that is >8% of the “actual” discharge, a fair
measurement within 8%, a good measurement within 5%, and an excellent measurement within
2%.45 However, inherent errors in the measurements are not considered in this study as part of
the uncertainty in the remote sensing estimates of discharge.

2 Uncertainty Associated with Remote Sensing-Based Discharge
Estimates

There are three types of error or uncertainty that contribute to the overall error of any given
remote sensing-based discharge estimate using the methods developed in this study. Yoon et al.46

and Tuozzolo et al.47 have assessed the error (uncertainty) associated with large-scale applica-
tions of various remote sensing-based discharge estimation algorithms. These include

1. Algorithm approximation uncertainty: This error is associated with the assumptions
in, and the applicability of the flow law (or algorithm) used to predict discharge if perfect
observations were available. This error may also include error in estimates of other
hydraulic characteristics of the flow including depth and velocity. The error associated
with assumptions within the algorithm may vary and may not be the same across the
entire range of flow.

2. Observation uncertainty: This consists of error associated with observations of the
water-surface height, the water-surface width, and the water-surface slope.

3. Algorithm parameter uncertainty: This is the error associated with the values used as
constant parameters in the algorithm and includes those that define the flow resistance in
the channel and the depth in the channel. For cases where discharges are available to
calibrate against, this uncertainty is relatively small. For cases where algorithms such as
mass-conserved flow law inversion are used, parameter uncertainty dominates.

2.1 River Discharge Algorithm Development and Uncertainty

The algorithm specifically evaluated here was developed by the USGS to estimate discharge
remotely and is based on the Manning equation. 48 There are similar algorithms that have been
developed that do not require calibration but rather enforce mass conservation based on the
Manning equation and on hydraulic geometry principles.49,50 The Manning equation is an empir-
ical adaptation of the Chezy equation, which describes a state of uniform flow that is neither
accelerating nor decelerating but is maintained at a steady rate (mean velocity remains constant
in the reach).
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The Chezy equation is given as

EQ-TARGET;temp:intralink-;e001;116;723V ¼ C
ffiffiffiffiffiffi
RS

p
; (1)

and the Manning equation

EQ-TARGET;temp:intralink-;e002;116;678V ¼ R0.67S0.5

n
; (2)

where V is the mean velocity of flow (m/s); R is the hydraulic radius of the flow (flow area
divided by the wetted perimeter) (m); S is the energy slope (taken as the water-surface slope
in many cases); C is the Chezy coefficient (index to flow resistance); and n is the Manning
resistance coefficient

Refer to the Appendix for the conceptual development of these equations.
Both the Manning and the Chezy equations provide estimates of the mean velocity in the

channel (V), and when multiplied by the cross-sectional area of the channel (top width,W, times
the mean depth, Y) yield the discharge, Q. The hydraulic radius, R, is approximately equal to Y
withinþ∕ − 10% or less for rivers with width to depth ratios >18 for rectangular channels51 and
for parabolic channels this can be demonstrated for channels with width to depth ratios >10.
Many rivers52 have width to depth ratios >20, which for parabolic shapes means the difference
between the hydraulic radius and the mean depth is <5%. Similarly, Bjerklie et al.26 have shown
that from a practical perspective, the water-surface slope yields similar statistics when used in
the Manning equation compared to the energy slope for a wide range of rivers. As such, for
application purposes, the water-surface slope is equivalent to the energy slope (S) given that
the water-surface slope can be directly measured.

The Chezy equation is derived from the principle that the source of flow resistance via shear
stress on the channel boundary (the bed and banks) is viscous friction. However, in practice, flow
resistance in rivers includes a number of interactions that expend energy and contribute to flow
resistance. Additionally, energy loss is associated with irregular channel geometry and flow con-
ditions, bedload transport, turbulent lateral and vertical motion in the flow field, form drag
around large obstacles (e.g., boulders and fallen trees on the channel bottom), and shallow water
wave resistance.53,54 The modification of the Chezy equation by Manning, in effect, describes
some of the energy loss as a function of the depth (hence the exponent 0.67 rather than 0.5).
Bjerklie24 also has shown that some portion of the flow resistance is a function of slope and
can account for some flow variance in rivers assuming a slope exponent of 0.33 rather than 0.5.
The result of the modification by Manning to include a depth exponent of 0.67 renders the
Manning coefficient and thus the Manning equation itself a semi-empirical flow law. Thus, the
Manning flow resistance coefficient becomes an empirical loss coefficient that accounts for any
and all forms of energy loss in the flow, with the caveat that some of that energy loss is already
accounted for by the modification of the depth exponent.

The Chezy equation may be considered to be based on physical principles provided it is
accepted that the shear stress is a function of velocity squared per Eq. (1). Fundamental assump-
tions of the equation – or any flow resistance equation – are that the slope and resistance are
primarily a function of the channel topography and boundary. The Manning equation indicates
that the Chezy resistance coefficient is not constant in a river reach and is not purely a function of
the boundary shear stress but is dependent on the depth to the one-sixth power, resulting in
the exponent on the hydraulic radius being raised to the two-third power rather than a half.
This improvement in flow prediction at varying depths using Manning as opposed to Chezy
is demonstrated by Bjerklie et al.25 As such, we can state that using the Chezy equation to com-
pute flow at any given flow level can be assumed to be physically based and free of model error
provided the width and mean depth of the channel are accurately known, and the mean velocity is
computed accurately via a known Chezy resistance coefficient. However, the Manning equation
has an implicit assumption that flow resistance is related to the hydraulic radius, which imparts
non-dimensional homogeneity and therefore possible error due to the assumption.

Given the wider application of the Manning equation, we can assume that it also can be
considered free of error for a given flow level provided the width, mean depth, and manning
resistance coefficient are accurately known. However, due to the application of Manning at
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varying flow levels, even given the improvement rendered in its more general application due to
relating the resistance to change in depth to the one-sixth power, we cannot argue that the
Manning is a physically based formula for all flow levels due to the uncertainty and empirical
nature of defining the flow resistance (the Manning n).

Remote observations provide measurements of the channel top width, water-surface height
(and thus the change in depth), and the water-surface slope. As a consequence, the water-surface
slope becomes the proxy for the friction slope that is the basis for the Manning and Chezy equa-
tion formulations, and some error is associated with this assumption. Bjerklie et al.26 have shown
that using an average slope over the range of flows in a wide range of rivers causes minimal
change in discharge estimates compared to using a dynamic slope. Based on this, we might
assume that using the water-surface slope rather than the friction slope would also have minimal
impact under most natural conditions.

While remote observations provide river water-surface heights, without a way to measure
the channel bottom height to translate the water-surface height to a mean channel depth, an
assumption must be made regarding the shape of the channel cross-section. Bjerklie et al.55 have
shown that for thousands of rivers over a large range in discharge, the ratio of the maximum to
the mean depth in a river is close to 1.5, which is the ratio that would result if the typical cross-
section were parabolic. An assumed parabolic cross-section shape allows for a linear relationship
between the width squared and the height observations to be extrapolated to a bottom height or
elevation of zero flow (represented by the y-intercept of the height as a function of the width).
Similarly, the assumption of a parabolic shape allows for the height change to be converted to a
mean depth by dividing the height change by 1.5. The error associated with the assumption of a
max-to-mean depth ratio of 1.5 can be inferred from the statistics elaborated by Bjerklie et al.55

As previously mentioned, given the nature of flow in natural channels, the flow resistance
coefficient is also associated with backwater effects due to the contraction and expansion of flow
and changes in cross-section,56–59 submerged obstructions, channel curvature,24,51,60–64 sediment
load,58 and changes in boundary roughness along the reach and with changing depth. Factors
affecting changes in flow resistance with depth include sediment sorting, occurrence of bedrock,
presence of sand and cobble bars, presence of vegetation, etc.58

Because of the complexity of natural rivers, a constant value for the Manning flow resistance
(n) under all flow conditions in a river reach would be an unrealistic assumption.25,57,58,65

Numerous studies have shown that the Manning n in most rivers varies with depth at a point
and spatially within the reach. In addition, the Manning n can vary significantly between rivers
and in a downstream direction. Several studies have shown that the bankfull Manning n is related
to the channel slope and that the Manning n can be modeled as a logarithmic or power function
of the relative depth (diminishing with increasing depth15,51,58,66). Given the empirical and highly
variable nature of Manning n in any given river, the independent assessment of accuracy in its
estimation for all flow levels cannot be realistically accomplished. However, the bankfull or
high flow estimate of its value may be compared to literature values and the many flood studies
conducted by the USGS and others.

The model framework (algorithm) we present for computing discharge from remote sensing
observations is based on a modified form of the Manning equation with a calibratable Manning
n function continuous over the range of flows (i.e., no discontinuities in channel configuration of
roughness elements) coupled with the assumption of a regular cross-section geometry as indi-
cated by Bjerklie et al.55 The application of this equation is based on the following general
assumptions—the slope and resistance are primarily a function of the channel topography and
boundary, and flow resistance can be modeled as a continuous function of depth. It is also
assumed that the stage has a monotonic relation to both width and discharge. The application
of the parabolic assumption to the river cross-section also has an unknown independent impact
on the discharge estimate but is assumed to be minor (see Sec. 2.2.1 following). The Manning
equation model used for estimating discharge is parsed to be able to uniquely estimate the
Manning roughness coefficient:15

EQ-TARGET;temp:intralink-;e003;116;112Q ¼
h
W �

�
ðh − BÞ �

�
1 −

�
1

1þr

���
1.67 � S0.5

i
n

; (3)
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where Q is the river discharge, (m3∕s); W is the width of flow, (m); h is the water-surface
height above a common datum, (m); S is the water-surface slope; n is the Manning roughness
(resistance) coefficient; B is the height of zero flow, (m); and r is the assumed channel shape
coefficient = 2 for a parabolic cross-section shape.

The value of the Manning n is calibrated based on a conceptual relative depth relation that is
represented by an assumed power law relation.51,58,66 The relative depth is formulated between
the bankfull depth and the flow depth at the time of the observation multiplied by the baseline
Manning n at bankfull depth, assuming that the Manning n at bankfull is at its lowest
value.57,64,65,67 This relation is given as15

EQ-TARGET;temp:intralink-;e004;116;627n ¼ nb �
�
H − B
h − B

�
x
; (4)

where nb is the bankfull reference flow resistance (Manning n) andH is the bankfull height. The
value of x, the exponent of the Manning n function given by Eq. (4), is calibrated for flows within
bank and can also be calibrated for separate sections of the flow rating to derive a compound
rating curve for the reach. A positive value for x implies that flow resistance decreases with
increasing depth. For overbank flows, a separate Manning n function can be calibrated if enough
overbank flow data are available. As a simple approach for overbank flow, the sign of x can be
reversed such Manning resistance will increase as depth increases above bankfull. However,
overbank flow uncertainty is not evaluated in this study due to the increased complexity and
lack of sufficient overbank flow measurements for calibration.

The Manning equation can be calibrated to any continuous monotonic distribution of
discharge values in a river provided the Manning n can vary to match the discharge given the
physical structure of the equation is fixed—meaning the depth and slope exponents are constant.
However, given that the Manning n will not (and cannot) be calibrated to each individual
discharge, a continuous Manning n function, as shown for Eq. (4) above, must be used. The
form of the Manning n function will constrain how well the Manning n will match each dis-
charge estimate and will not be able to account for variation beyond the limits of the function.

2.1.1 Testing the discharge algorithm

Information from a set of flow measurements was assembled to test the application of the dis-
charge algorithm derived in the previous section. A sample of USGS flow measurement data was
downloaded from USGS National Water Information System (NWIS) database68 from gaging
stations on 30 rivers in the United States (Fig. 1). The rivers were selected to provide a range of

Fig. 1 Map showing location of 30 USGS streamgages used to develop the 30-river discharge
data set.
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geographic locales and sizes of rivers, with all widths greater than 30 m (i.e., a minimum size
putatively observable by spaceborne instruments). The measurement data were supplemented
with water-surface slope and other geomorphologic information and assumed to represent
ground truth. The data set was composed of 37 to 160 USGS discharge measurements from
each of 30 gaged rivers, chosen to be geomorphologically and geographically diverse across
the United States, with eight rivers located in Alaska (Table 1). The measurements include
the height of the water-surface stage for a specific location, the measured water-surface
width, mean depth, mean velocity, and the discharge computed from width times depth
times velocity. The width, depth, and velocity data were measured at cross-section locations
that vary in the gaged reaches, and as such do not necessarily represent the reach averaged
quantities that will be observed remotely. To address this, a quality control process was
implemented that includes a rule that the width and stage must correlate positively and vary
monotonically.

For the purposes of this study, the maximum measured stage and depth are considered
representative of the bankfull state. Information on river channel physical characteristics was
also collected for each stream gage including the slope, meander length, sinuosity of the reach
containing the gage, Landsat measured width, and modeled mean and 2-year discharge.69 The
characteristic data were obtained from Frasson et al.18,19 or were independently measured by
the USGS or obtained from available Geographic Information System (GIS) sources. These data
and sources are reported in LeNoir et al.69 The data were selected without consideration of
the distribution of flow duration such that moderate to low flows are likely over-represented
relative to high flows in frequency of measurement.

2.1.2 Quality control of the discharge data

Quality control requirements were applied to the flow measurements to ensure the representa-
tiveness of the data. The primary screening criteria required that the reported discharge within
5% of the discharge as calculated by multiplying the reported width, depth, and velocity.
Additional quality control requirements are itemized below; data that failed any single screening
criterion were censored from the record:

1. The width-stage relation reasonably represents a relation where a unique width is asso-
ciated with a unique stage (monotonic) and the width and stage both increase in the same
direction (positive correlation) at different rates, often as a power law. This requirement
considers some normal random scatter around a general monotonic trend that can be
smoothed by fitting a line to the relation.

2. The relation between stage and width reasonably represents a consistent measurement
location that can be assumed to be representative of a reach average. Data that were
clearly collected at a different location in the river as evidenced by a defined stage-width
relation that exhibited obvious discontinuity on either the stage, width, or both axes of
a width versus stage graphical plot (Fig. 2) were removed.

3. Data points that represent an overbank flow condition as evidenced by a clear disconti-
nuity or distinct inflection point in the graphical plot of width versus stage (Fig. 2), or are
above-referenced flood stage was removed. No additional verification of overbank was
conducted under the assumption that no clear discontinuity would necessarily imply that
the flow remains in a contiguous and confined channel rather than spreading out beyond
the channel confines.

4) Individual measures of stage, width, or both that were not screened by criteria 2 or 3
above that nevertheless plotted well above or below (by > ∼ 20%) the general relation
between width and stage and violated the monotonic and/or positive correlation c
requirement (Fig. 2) were removed.

The quality control measures described above resulted in the removal of 13% of the mea-
surements. The quality-controlled data set is publicly available through a USGS data release
at Ref. 62.
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2.1.3 Algorithm calibration procedure

The algorithm calibration proceeded by deriving a linear relation between width and stage
assuming that the width varies with depth by a power function (e.g., parabolically—where the
width squared varies linearly with stage). Using this relation, width was computed as a function
of stage for each river. This step assures a uniform, monotonic linear increase in width with an
increase in stage and assumes the calibrated width is representative of the average channel width
for the reach. Figure 3 graphically displays the calibration process.

The maximum width in the derived time series and the maximum stage in the time series were
assumed to represent bankfull channel dimensions. Bankfull values served as the reference point
for determining relative depth in the channel. The bankfull depth in the channel for any given site
was calculated from the following parabolic relation (bankfull stage – B)/1.5 where B (elevation
of zero flow) is the no flow or bottom boundary of the assumed cross-section. The value 1.5 is
the ratio of the maximum to mean depth in a cross-section that has a parabolic shape, with stage

Fig. 3 Flow chart illustrating the procedure for calibrating the algorithm parameters – USGS
National Water Information System (NWIS).

Fig. 2 Example of stage-width relation for the Susquehanna River near Waverley NY (station
01515000) with anomalous value outside of general trend (red point) that was removed from the
data set, and values that represent overbank flow and/or measurement at a different cross-section
(yellow points) were also removed from the data set.
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representing the change in depth at the center (deepest) part of the parabolic cross-section. The
value of B was determined by matching the mean of the observed depths in the calibration data
with the mean of the estimated depths determined from the observed stage minus B divided by
1.5 (see Fig. 3).

Calibration to all observed discharges proceeded by matching the mean and standard
deviation of algorithm-estimated discharges to USGS observed discharges by adjusting the
bankfull reference Manning n (fitted parameter nb) and the exponent x of the Manning n trans-
form function that relates the nb to the relative depth as in Eq. (4). The parameter B was held
constant.

An alternative calibration minimizes the normalized root mean square error (NRMSE;
normalized to the mean flow) and maximizes the Kling–Gupta efficiency (KGE).70,71 Comparing
the two calibration methods shows very little difference, indicating that the algorithm optimizes
to similar values using different calibration objectives.

2.1.4 Algorithm performance and uncertainty—discharge calibration results

The overall calibration results for the 30 rivers are provided in Table 2. In general, with the
exception of the Tennessee River and the Pee Dee River, overall performance was good across
the rivers—with mean values of NRMSE, log residual and percent residual within 10%, and
Nash–Sutcliffe Efficiency (NSE72) and KGE averaging better than 0.94. Comparatively, the
Tennessee River flow depth and slope are highly regulated by dams and for navigation. As such
its flow regime does not necessarily conform to a flow resistance law primarily driven by gravity.
Similarly, relative to other rivers the Pee Dee River discharge, flow depth, and slope are highly
controlled and show a wide range due to dam operation.

2.1.5 Calibration performance as a function of number of calibration points

In practice, it is assumed there would be a limited number of observed in-situ discharges avail-
able for calibration. A Monte Carlo style experiment was conducted to determine an optimally
minimum number of observations (calibration points) needed to reliably calibrate nb and x in
Eq. (4). Random, unique, and independent subsamples were taken from the USGS measurement
data set for each river producing 100 sets of calibration results for a range of subsample sizes.
The subsample sizes represented a different number of observations available for calibration,
starting with two observations up to 40 observations. The calibration points for each subsample
were compared to the calibration results using the entire record used for the complete calibration
described above. The results using the entire record represent the objective values, which are
considered to be the best possible estimate. As such, the full calibration is assumed to represent
algorithm uncertainty apart from uncertainty associated with the input data and uncertainty asso-
ciated with differences in river flow regime and morphology.

For example, the results for Willamette River show that the parameter values will converge to
within 10% of the optimal nb on average using seven randomly selected observations of dis-
charge and within 10% of the optimum value for the parameter x on average using 20 calibration
points (Fig. 4; Table 3). Additionally, the optimum value for the KGE converges using three
calibration points on average (Table 3). Based on average values from these experiments, it may
be concluded that a satisfactory calibration may be achieved by calibrating with a minimum
of approximately six in-situ discharge observations (as measured by the KGE), and optimum
values for the algorithm parameters will be attained when 13 to 19 calibration points are
available.

These tests also indicate that the calibrated parameters stabilize even over several years of
discharge observations used as calibration points, showing that the calibration and the param-
eters are not subject to substantial fluctuations over time.

2.1.6 Error distribution and algorithm improvements

Errors in the discharge estimates generated from the Manning algorithm applied in this study
exhibit a pronounced positive bias for lower discharges in approximately one-third of the rivers

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-13 Jan–Mar 2023 • Vol. 17(1)



T
ab

le
2

A
lg
or
ith

m
pe

rf
or
m
an

ce
an

d
un

ce
rt
ai
nt
y:

co
m
pa

ra
tiv
e
tw
o-
pa

ra
m
et
er

ca
lib
ra
tio

n
re
su

lts
.

S
ta
tio

n
nu

m
be

r
R
iv
er

na
m
e

C
al
ib
ra
te
d
be

st
2
pa

ra
m
et
er

fit

C
al
ib
ra
te
d

n
b

C
al
ib
ra
te
d

x
N
R
M
S
E

N
S
E

M
ea

n
lo
gR

es
(p
ct
)

M
ea

n
P
ct
R
es

K
G
E

O
cc

ur
re
nc

e
of

la
rg
e
lo
w
en

d
bi
as

(>
20

%
lo
g
re
si
du

al
sk

ew
ed

to
ov

er
es

tim
at
io
n)

01
18

40
00

C
on

ne
ct
ic
ut

R
iv
er

at
T
ho

m
ps

on
vi
lle
,
C
T

0.
02

3
4.
1

0.
19

0.
96

−
0.
1

0.
16

0.
96

Y
es

01
43

40
00

D
el
aw

ar
e
R
iv
er

at
P
or
t
Je

rv
is
,
N
Y

0.
01

7
1.
1

0.
27

0.
98

−
0.
14

0.
17

0.
96

Y
es

01
51

50
00

S
us

qu
eh

an
na

R
iv
er

N
ea

r
W
av

er
ly
,
N
Y

0.
02

1
0.
5

0.
14

0.
98

−
0.
17

0.
26

0.
97

Y
es

01
57

60
00

S
us

qu
eh

an
na

R
iv
er

at
M
ar
ie
tta

,
P
A

0.
03

7
1.
4

0.
11

0.
99

−
0.
29

0.
47

0.
98

Y
es

01
63

85
00

P
ot
om

ac
R
iv
er

at
P
oi
nt

of
R
oc

ks
,
M
D

0.
02

1
0.
4

0.
31

0.
97

−
0.
23

0.
53

0.
95

Y
es

02
08

75
00

N
eu

se
R
iv
er

ne
ar

C
la
yt
on

,
N
C

0.
02

2
0.
7

0.
23

0.
97

−
0.
13

0.
15

0.
96

Y
es

02
12

90
00

P
ee

D
ee

R
N
R

R
oc

ki
ng

ha
m
,
N
C

0.
01

5
3.
1

0.
33

0.
93

−
0.
48

1.
55

0.
93

Y
es

03
59

35
00

T
en

ne
ss

ee
R
iv
er

at
S
av

an
na

h,
T
N

0.
02

3
8.
3

0.
36

0.
38

−
0.
1

0.
44

0.
69

05
08

25
00

R
ed

R
iv
er

of
th
e
N
or
th

at
G
ra
nd

F
or
ks
,
N
D

0.
02

3
2.
2

0.
35

0.
86

−
0.
23

0.
45

0.
91

Y
es

06
18

55
00

M
is
so

ur
iR

iv
er

ne
ar

C
ul
be

rt
so

n,
M
T

0.
01

5
1.
2

0.
20

0.
98

0.
02

0
0.
99

68
20

50
0

P
la
tte

R
iv
er

ne
ar

A
ge

nc
y,

M
O

0.
03

0.
5

0.
34

0.
96

−
0.
52

0.
92

0.
94

Y
es

06
93

45
00

M
is
so

ur
iR

iv
er

at
H
er
m
an

n,
M
O

0.
02

9
1

0.
05

0.
99

0
0

0.
99

70
20

50
0

M
is
si
ss

ip
pi

R
iv
er

at
C
he

st
er
,
IL

0.
02

4
0.
8

0.
04

0.
99

0
0

1

07
02

20
00

M
is
si
ss

ip
pi

R
iv
er

at
T
he

be
s,

IL
0.
02

3
0.
5

0.
08

0.
98

0.
02

−
0.
02

0.
99

92
61

00
0

G
re
en

R
iv
er

N
ea

r
Je

ns
en

,
U
T

0.
03

7
0.
5

0.
09

0.
99

−
0.
04

0.
05

0.
99

11
37

71
00

S
ac

ra
m
en

to
R
A
B
B
en

d
B
rid

ge
N
R
R
ed

B
lu
ff,

C
A

0.
03

1
−
0.
1

0.
04

1.
00

−
0.
01

0.
01

0.
99

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-14 Jan–Mar 2023 • Vol. 17(1)



T
ab

le
2
(C

on
tin

ue
d)
.

S
ta
tio

n
nu

m
be

r
R
iv
er

na
m
e

C
al
ib
ra
te
d
be

st
2
pa

ra
m
et
er

fit

C
al
ib
ra
te
d

n
b

C
al
ib
ra
te
d

x
N
R
M
S
E

N
S
E

M
ea

n
lo
gR

es
(p
ct
)

M
ea

n
P
ct
R
es

K
G
E

O
cc

ur
re
nc

e
of

la
rg
e
lo
w
en

d
bi
as

(>
20

%
lo
g
re
si
du

al
sk

ew
ed

to
ov

er
es

tim
at
io
n)

11
38

95
00

S
ac

ra
m
en

to
R

A
C
ol
us

a,
C
A

0.
03

8
0.
2

0.
07

0.
99

−
0.
02

0.
02

0.
99

12
15

08
00

S
no

ho
m
is
h
R
iv
er

N
ea

r
M
on

ro
e,

W
A

0.
01

2
1.
9

0.
24

0.
94

−
0.
2

0.
28

0.
95

Y
es

12
39

95
00

C
ol
um

bi
a
R
iv
er

at
In
te
rn
at
io
na

lB
ou

nd
ar
y

0.
01

9
0.
5

0.
04

0.
99

0.
02

-0
.0
2

0.
99

12
42

25
00

S
po

ka
ne

R
iv
er

at
S
po

ka
ne

,
W
A

0.
04

3
2.
4

0.
10

0.
99

−
0.
16

0.
26

0.
98

Y
es

12
46

25
00

W
en

at
ch

ee
R
iv
er

at
M
on

ito
r,
W
A

0.
02

9
1

0.
12

0.
99

−
0.
1

0.
13

0.
98

Y
es

14
19

10
00

W
ill
am

et
te

R
iv
er

at
S
al
em

,
O
R

0.
02

2
0.
5

0.
10

0.
99

−
0.
04

0.
05

0.
99

15
30

40
00

K
us

ko
kw

im
R

at
C
ro
ok

ed
C
re
ek

,
A
K

0.
01

8
0.
9

0.
07

0.
97

−
0.
03

0.
04

0.
99

15
35

60
00

Y
uk

on
R

at
E
ag

le
,
A
K

0.
02

2
0.
4

0.
06

0.
97

−
0.
01

0.
04

0.
98

15
45

35
00

Y
uk

on
R

N
R

S
te
ve

ns
V
ill
ag

e,
A
K

0.
02

3
0.
5

0.
04

0.
99

0.
02

−
0.
02

0.
99

15
48

55
00

T
an

an
a
R

at
F
ai
rb
an

ks
,
A
K

0.
03

7
−
0.
3

0.
14

0.
92

0.
06

−
0.
02

0.
96

15
51

55
00

T
an

an
a
R

at
N
en

an
a,

A
K

0.
03

4
1.
3

0.
07

0.
98

0
0.
01

0.
99

15
56

54
47

Y
uk

on
R

at
P
ilo
t
S
ta
tio

n,
A
K

0.
01

9
2.
5

0.
13

0.
83

−
0.
01

0.
03

0.
92

15
87

50
00

C
ol
vi
lle

R
at

U
m
ia
t,
A
K

0.
02

8
1.
5

0.
13

0.
99

−
0.
06

0.
64

0.
99

15
90

80
00

S
ag

av
an

irk
to
k
R

N
R

P
um

p
S
T
A

3,
A
K

0.
03

1
1.
7

0.
26

0.
86

−
0.
04

0.
08

0.
93

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-15 Jan–Mar 2023 • Vol. 17(1)



T
ab

le
2
(C

on
tin

ue
d)
.

S
ta
tio

n
nu

m
be

r
R
iv
er

na
m
e

C
al
ib
ra
te
d
be

st
2
pa

ra
m
et
er

fit

C
al
ib
ra
te
d

n
b

C
al
ib
ra
te
d

x
N
R
M
S
E

N
S
E

M
ea

n
lo
gR

es
(p
ct
)

M
ea

n
P
ct
R
es

K
G
E

O
cc

ur
re
nc

e
of

la
rg
e
lo
w
en

d
bi
as

(>
20

%
lo
g
re
si
du

al
sk
ew

ed
to

ov
er
es

tim
at
io
n)

M
ea

n
0.
02

6
1.
4

0.
16

0.
94

−
0.
10

0.
22

0.
96

S
td
ev

0.
00

8
1.
6

0.
11

0.
12

0.
14

0.
34

0.
06

M
ax

0.
04

3
8.
3

0.
36

1.
00

0.
06

1.
55

1.
00

M
in

0.
01

2
−
0.
3

0.
04

0.
38

−
0.
52

−
0.
02

0.
69

M
ed

ia
n

0.
02

3
1.
0

0.
13

0.
98

−
0.
04

0.
07

0.
98

75
th

0.
03

1
1.
7

0.
24

0.
99

0.
00

0.
28

0.
99

25
th

0.
02

1
0.
5

0.
07

0.
96

−
0.
16

0.
01

0.
95

A
la
sk

an
R
iv
er
s

M
ea

n
0.
02

7
1.
1

0.
11

0.
94

−
0.
01

0.
10

0.
97

st
de

v
0.
00

7
0.
9

0.
07

0.
06

0.
04

0.
22

0.
03

m
ax

0.
03

7
2.
5

0.
26

0.
99

0.
06

0.
64

0.
99

m
in

0.
01

8
−
0.
3

0.
04

0.
83

−
0.
06

−
0.
02

0.
92

M
ed

ia
n

0.
02

6
1.
1

0.
10

0.
97

−
0.
01

0.
04

0.
99

75
th

0.
03

2
1.
6

0.
13

0.
98

0.
01

0.
05

0.
99

25
th

0.
02

1
0.
5

0.
07

0.
91

−
0.
03

0.
00

0.
95

n
b
,
ba

nk
fu
ll
re
fe
re
nc

e
M
an

ni
ng

n
;
x
,
ex

po
ne

nt
of

M
an

ni
ng

n
fu
nc

tio
n;

E
Z
F
,
el
ev

at
io
n
of

ze
ro

flo
w

in
ch

an
ne

l(
ch

an
ne

lb
ot
to
m
);
N
R
M
S
E
,
no

rm
al
iz
ed

ro
ot

m
ea

n
sq

ua
re

er
ro
r;
N
S
E
,
N
as

h–
S
ut
cl
iff
e

ef
fic
ie
nc

y
st
at
is
tic
;l
og

R
es

,t
he

lo
g
of

th
e
R
S
Q
es

tim
at
e
m
in
us

th
e
lo
g
of

th
e
ob

se
rv
ed

di
sc

ha
rg
e;

P
ct
R
es

,R
S
Q
es

tim
at
ed

di
sc

ha
rg
e
m
in
us

th
e
ob

se
rv
ed

di
sc

ha
rg
e
di
vi
de

d
by

th
e
ob

se
rv
ed

di
sc

ha
rg
e;

K
G
E
,
K
lin
g–

G
up

ta
ef
fic
ie
nc

y;
R
S
Q
,
re
m
ot
e
se

ns
in
g
di
sc

ha
rg
e.

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-16 Jan–Mar 2023 • Vol. 17(1)



(examples shown in Fig. 5). Note that the mean bias was near zero for the calibrated models
because the calibration included matching the mean (Table 2).

The low-end bias indicates that the Manning n is underestimated at low flows relative to the
middle and upper end of the hydrograph. This is likely because the hydraulic flow resistance at
low flow becomes more influenced by individual flow obstructions on the bed and banks in
the river.73 Flow may become less turbulent in some portions of the reach and more turbulent
in others because flow paths may diverge and become directed vertically and laterally, wave
resistance becomes more significant as depth becomes shallower, and greater portions of the
cross-section may not contribute to downstream conveyance (i.e., dead zones develop in the
flow cross-section).

The largest error (and greatest uncertainty) in the discharge estimates occur at low flow for
rivers that show the low-end bias (Fig. 5; Table 2; examples include the Pee Dee River, the Neuse
River, the Potomac River). These rivers tend to be those with very low slopes and a wide range of
discharge, and/or the flow regime at lower flow is dominated by obstructions. This same trend,
although not nearly as prominent, is evident for many rivers that do not show the bias, indicating
that the assumption of a linear function for transforming Manning n flow resistance breaks
down at low discharge as the relation between depth and flow resistance becomes non-linear.
Examining the aggregate record of estimated discharge for all of the test rivers shows that the
error (uncertainty) is clearly also related to the depth of flow and the discharge.

Three of the study rivers exhibit high errors, the Tennessee River, the Pee Dee River, and the
Red River. The Tennessee River error is seen across the entire range of flow and not concentrated
at the low end. This is attributed to flow, depth, and slope control by several dams along the
channel both upstream and downstream of the measurement reach. The Pee Dee River shows the
highest percent errors of any river, especially at the low end of the discharge and depth range of
flow. The Pee Dee also has dams along the river reach that control the flow, depth, and slope, and
exhibits very low Froude numbers at the low end of the discharge range. The Froude (F) number
represents the ratio of inertial to gravitational forces in the flow,48,51 and is computed directly
from the USGS flow measurement data as the ratio of the mean velocity divided by the square

root of the gravitation acceleration constant times the mean depth (F ¼
ffiffiffiffi
V
gY

q
, where V is the

mean velocity, Y is the mean depth, and g is the gravitational acceleration constant).
The low Froude numbers may indicate that significant portions of the cross-section are not

contributing to downstream flow due to stagnant water or pooling of water, with section control
dominating the flow regime. The flow regime of both of these rivers reaches is considered to
violate the assumptions inherent in the discharge algorithm that the channel control is the dom-
inant control on slope, depth, velocity, and discharge. The Red River shows a majority of dis-
charge estimates exhibiting relatively high error also at the low end of the discharge range with
very low Froude numbers similar to the Pee Dee River. The Red River calibration is skewed to

Fig. 4 Example Monte Carlo experiment nb and x calibration results for the Willamette River at
Salem (station 14191000) showing the mean Manning reference flow resistance (nb) (a) and the
exponent of the Manning n function (x ) (b) in the subsampled groups (points) and two standard
deviations above and below the mean (bars) compared to the control nb and x values calibrated
from the entire record (horizontal line). As the number of calibration points increases, the mean
values converge toward the control value and standard deviation decreases.

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-17 Jan–Mar 2023 • Vol. 17(1)



Table 3 Calibration performance as a function of number of calibration points: convergence
characteristics for the two-parameter calibration results.

Station
Number River name

Number of
calibration
points to

converge on
stable value

for nb

Number of
calibration
points to

converge on
stable value

for x

Number of
calibration
points to

converge on
stable value
for KGE

01184000 Connecticut River at Thompsonville, CT. 20 20 4

01434000 Delaware River at Port Jervis, NY 40 40 7

01515000 Susquehanna River near Waverly, NY 20 40 3

01576000 Susquehanna River at Marietta, PA 8 20 4

01638500 Potomac River at Point of Rocks, MD 40 40 8

02087500 Neuse River near Clayton, NC 20 30 8

02129000 Pee Dee R NR Rockingham, NC 40 40 8

03593500 Tennessee River at Savannah, TN 5 4 4

05082500 Red River of the North at Grand Forks, ND 20 30 7

06185500 Missouri River near Culbertson, MT 30 30 30

6820500 Platte River near Agency, MO 40 40 7

06934500 Missouri River at Hermann, MO 3 3 4

7020500 Mississippi River at Chester, IL 3 3 6

07022000 Mississippi River at Thebes, IL 3 3 5

9261000 Green River near Jensen, UT 5 30 4

11377100 Sacramento R AB Bend Bridge NR Red Bluff, CA 3 4 4

11389500 Sacramento R A Colusa, CA 6 20 5

12150800 Snohomish River near Monroe, WA 30 30 3

12399500 Columbia River at International Boundary 4 3 3

12422500 Spokane River at Spokane, WA 6 7 3

12462500 Wenatchee River at Monitor, WA 9 20 4

14191000 Willamette River at Salem, OR 7 20 3

15304000 Kuskokwim R at Crooked Creek, AK 3 20 7

15356000 Yukon R at Eagle, AK 3 8 4

15453500 Yukon R NR Stevens Village, AK 3 6 3

15485500 Tanana R at Fairbanks, AK 10 20 6

15515500 Tanana R at Nenana, AK 3 7 6

15565447 Yukon R at Pilot Station, AK 4 7 6

15875000 COLVILLE R AT UMIAT AK 5 4 10

15908000 Sagavanirktok R NR Pump STA 3, AK 3 20 4
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the low end because there are fewer midrange and high flow measurements that deviate from the
stage-discharge trend defined by the lower discharges. This indicates that there are several flow
regimes that are not adequately represented by a single flow resistance function. For this reason,
the Red River also violates the general assumptions of the discharge algorithm. As such, these
data were removed from the discharge database to facilitate further examination of the error
trends among the remaining sites.

The percent fractional error for all of the estimated discharges in the discharge data set
(excluding the Tennessee, Pee Dee, and Red River data) is largest at depths below 3 m
[Fig. 6(a)], and discharge below ∼1000 m3∕s [Fig. 6(b)]. The relation between error and
discharge shows a distinct trend line [Fig. 6(b)] with decreasing error with discharge, although
the trend line does not show a strong coefficient of determination (R2).

We tested a calibration procedure that allowed the parameter B to be a freely adjusted param-
eter instead of assuming this to be a measured value. While this three-parameter calibration (nb,
x, and B) increased the number of degrees of freedom, the calibration was able to reduce low-end
bias in many rivers. However, it was found that in almost all cases (with the exception of the
Tanana River at Fairbanks, the Platte River, and the Columbia River) the calibrated value of B
was higher than observed resulting in shallower estimated depths, higher estimated velocities,
and larger Froude numbers compared to the observed values with only marginal improvement in
overall predictive power compared to using a measured depth.

The low-end bias has been observed in a general way when applying a Manning type equa-
tion to flows in many rivers,25,74 which is hypothesized here to be due to a non-linear relationship
between flow depth and flow resistance, although nonlinearity between flow resistance and slope

Table 3 (Continued).

Station
Number River name

Number of
calibration
points to

converge on
stable value

for nb

Number of
calibration
points to

converge on
stable value

for x

Number of
calibration
points to

converge on
stable value
for KGE

Mean 13 19 6

Stdev 13 13 5

Max 40 40 30

Min 3 3 3

Median 6 20 5

75th 20 30 7

25th 3 6 4

Alaskan rivers

Mean 4 12 6

Stdev 2 7 2

Max 10 20 10

Min 3 4 3

Median 3 8 6

75th 4 20 6

25th 3 7 4

nb , bankfull reference Manning n value; x , exponent on the relative depth Manning n function; number of
calibration points to converge, the number of measurements needed to calibrate to a relatively stable value
equal to the value of all observations points are used to calibrate; KGE, Kling–Gupta efficiency.
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and width may also be important. Dingman and Sharma74 adjusted their statistically derived
Manning type equation for non-linearity in slope. The roughness height/boundary layer theory48

can be incorporated into the Manning n transformation function by adding an additive term that
includes a roughness height layer that does not effectively contribute to the uniform flow field.

Fig. 6 (a) and (b) Absolute value of percent error of discharge for the aggregate estimated
discharges for the 30 study rivers plotted against the estimated depth of flow and for each
discharge—note that this plot excludes the Tennessee, Pee Dee, and Red Rivers, as the depths
of these rivers are considered to be artificially controlled or the flow does not meet assumptions
of channel control due to excessive stagnant water in the channel. (b) The linear trend between
discharge and error.

Fig. 5 Comparative RSQ estimate versus USGS ground-based gaged discharge (left panel) and
error distribution as a function of the RSQ estimate (right panel) for three example rivers. (a) and
(b) the Delaware, (c) and (d) Potomac, and (e) and (f) Green.
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This results in a function that progressively offers more resistance to flow as the depth becomes
shallower because the roughness height becomes more dominant relative to the full depth of
flow. However, this approach can result in negative discharges when the roughness height
exceeds the minimum height in the stage observations.

We adjusted for this observed nonlinearity by assuming the exponent x varies with relative
depth to derive Eq. (5) recognizing the formulation presented in Eq. (4) results in over estimation
of the low discharge. Therefore, a factor that would reduce the value of x with relative depth
would have the result of increasing flow resistance and decreasing discharge as depth decreases.
We also used relative depth in the nonlinear function because it can be readily measured from
satellites by tracking WSF. Future improvements may also include relative change in slope and
width as nonlinear parameters. As such, we adopt Eq. (5) as the most robust Manning n trans-
form and adapt the overall strategy to measure depth (B) rather than let it be a freely calibrated
parameter

EQ-TARGET;temp:intralink-;e005;116;580n ¼ nb �
�
H − B
h − B

�
exp

�
x �

�
H − B
h − B

��
: (5)

Figures 7–9 show the results of the initial two-parameter calibration, the three-parameter
calibration, and the modified Manning transformation function calibration for selected rivers.
Comparative results for the three calibrations are shown in Table 4.

The three-parameter calibration (optimized values for the value of B, nb, and x) eliminated
low-end bias and reduced error as compared to the initial two parameter calibration (Fig. 7),
which used the observed depth to define the value of B (Fig. 9). However, to achieve the reduc-
tion in bias, the Froude number, as an index to hydraulic state of flow, is much larger due to
shallower depth (increasing value of B) and predicted higher velocity. Thus, the three-parameter
calibration improved on the low-end bias at the expense of realism in the hydraulics. Note also
that the largest error is still concentrated at the low end of the discharge.

The calibration results for Eq. (5) (Fig. 8) are similar to the three-parameter calibration,
successfully eliminating the low-end bias and reducing overall error with the advantage that
it does not introduce an additional parameter that requires calibration, enabling the value of B
to remain a measurable parameter.

The results of the three calibration options show that the two-parameter calibration with the
modified (and nonlinear) Manning n transform function (where nb and x are calibrated holding B
constant) performs as well overall compared to the three-parameter calibration (Table 4).
Increasing error is associated with a wider range of predicted Froude numbers (meaning wider
range of flow conditions) as indexed by the ratio of the maximum to minimum Froude number
(Fig. 10). This indicates that the preferred algorithm option for rivers with an expected wider
range of flow would be the nonlinear Manning n transform [Eq. (5)].

The overall NRMSE is also correlated with normalized stream power (Table 1) as defined and
provided by Frasson et al.19 and illustrated in Fig. 11 (Stream power is defined in Frasson et al.,19

as the weight density of water times the flow rate times the slope, Power ¼ QγS). Rivers with
stream power <200 W∕m are the rivers with the highest NRMSE. Froude number and stream
power are strong indicators of algorithm performance.

Examining the aggregate error for all of the flows from the 30 rivers (Fig. 6) excluding the
Tennessee and Pee Dee Rivers (due to flow controls by dams), as well as the Red and Pee Dee
Rivers due to very low streampower (e.g., flow is more like flow through pools rather than
flow controlled by slope with very low Froude numbers), we summarized threshold stats for
NRMSE associated with depth and discharge (Table 5). Considering a depth threshold of >2 m

the data show that 52% have an error of 5% or less and 74% have an error of 10% or less
compared to 39% and 58% for all flows. Using a threshold of >3 m, 63% are below 5% error
and 87% below 10% error. Considering a discharge threshold of >1000 m3∕s, the data show
that 65% have an error of 5% or less and 88% have an error of 10% or less compared to 39% and
58% for all flows. Using a threshold of >2000 m3∕s, 71% are below 5% error and 92% below
10% error.
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2.2 Remote Sensing Observations Data Uncertainty

The remotely sensed river observations consist of the WSE, the width of the water-surface, and
the water-surface slope. Although we anticipate limited ground-based observations of the
discharge, velocity, and reach bathymetry to calibrate the RSQ estimates, we do not consider
ground-based measurement error in this section, and it is generally assumed that uncertainty
associated with ground-based observations is negligible. Validation studies for both observed

Fig. 7 Calibrated discharge estimates for the two-parameter (initial) calibration showing (a) the
predicted discharge versus the observed discharge, (b) the predicted Froude number versus
the observed Froude number, and (c) the error versus predicted discharge for the Susquehanna
River at Marietta (station 01576000). USGS, U.S. Geological Survey; RSQ, remote sensing
discharge.
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variables have been conducted at many locations using different instruments mounted on various
satellite platforms providing first-order expected observation accuracies. Along with these
studies, the spatial (x, y, and z) accuracies are generally reported based on the specifications
of the observing instruments, including discussion of factors that may reduce accuracy.

Recently, observations of water-surface height in rivers (and other water bodies) derived
from the Jason-2 and Jason-3 satellite nadir altimeter missions provide an estimate of

Fig. 8 Calibrated discharge estimates for the three-parameter (initial) calibration showing (a) the
predicted discharge versus the observed discharge, (b) the predicted Froude number versus the
observed Froude number, and (c) the error versus predicted discharge (C) for the Susquehanna
River at Marietta (station 01576000). USGS, U.S. Geological Survey; RSQ, remote sensing
discharge.
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observational error. These estimates are based on qualitative characteristics of the target as
well as atmospheric and instrument conditions and responses. As such, they are not precise
errors but rather provide an expected error based on qualitative characteristics of the
observation.43

Fig. 9 Calibrated discharge estimates for the two-parameter calibration with the modified Manning
n transform [Eq. (5)] showing (a) the predicted discharge versus the observed discharge, (b) the
predicted Froude number versus the observed Froude number, and (c) the error versus predicted
discharge for the Susquehanna River at Marietta (station 01576000). USGS, U.S. Geological
Survey; RSQ, remote sensing discharge.
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The accuracy of space-based altimeters that track water-surface heights globally in general
have reported observational accuracies (when compared to a time series of in-situ observations)
of a few to several tens of cm reported as the root mean square (rms) error. The accuracy is
dependent on many factors,43 including the surface roughness and width, and is typically
>10 cm rms for river reaches. For satellite-based laser altimeters, the accuracy is better and
there is a greater potential to acquire stage for smaller tributaries.75–77 There has been continuity
of satellite radar altimeters over several decades but the latest radar altimeter missions, such as
Sentinel-3 and Sentinel-6, use enhanced technology (Delay-Doppler SAR) in combination with
innovative techniques such as fully-focused SAR (FF-SAR) with the aim of increasing the
current spatial resolution of stage measurements along the ground, from 300 to 40–80 m.

Observations from the SWOT mission will be reported on a reach scale by averaging from a
point cloud generated by wide swath altimetry (Biancamaria et al.3 SWOT | PO.DAAC/JPL/
NASA). The accuracy of the SWOT mission water surface heights and widths has not been
fully evaluated as observational data is only beginning to be received. The accuracy of averaged
water surface heights over a 10 km reach and 100 m wide river is expected to be on the order of
10 cm.3 SWOT expected uncertainty in observations of water-surface width, expressed as the
resolution of the image, is 15 m. Comparatively, Landsat resolution is 30 m,39,40 however, the
width accuracy is also a function of the classification algorithm that defines which pixels contain
water. Although there are satellite-based imagers with much better resolution (10 m or better),
these imagers do not routinely observe locations across the earth that can provide time series of
observations. As such, it is expected that the best estimates of width observation uncertainty
would be on the order of þ∕ − 15 m.

Bjerklie26 showed that observational uncertainty—viewed as a fixed value for height and
width (e.g., þ∕ − 10 cm for height and þ∕ − 30 m for width)—becomes more important in

Fig. 10 Error as a function of Froude number index (Fmax∕Fmin). RSQ, remote sensing discharge.

Fig. 11 Plot of the NRMSE against the Frasson et al.,18,19 stream power.

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-31 Jan–Mar 2023 • Vol. 17(1)



T
ab

le
5

E
rr
or

th
re
sh

ol
d
st
at
is
tic
s
be

tw
ee

n
ob

se
rv
ed

an
d
re
m
ot
e
se

ns
in
g
es

tim
at
ed

di
sc

ha
rg
e
(R

S
Q
).

N
o.

m
ea

su
re
m
en

ts
F
ra
ct
io
na

lp
er
ce

nt
th
re
sh

ol
d

F
ra
ct
io
na

lp
er
ce

nt
er
ro
r
of

es
tim

at
es

be
lo
w

th
re
sh

ol
d

N
o.

m
ea

su
re
m
en

ts
F
ra
ct
io
na

lp
er
ce

nt
th
re
sh

ol
d

F
ra
ct
io
na

lp
er
ce

nt
er
ro
r
of

es
tim

at
es

be
lo
w

th
re
sh

ol
d

F
ra
ct
io
na

lp
er
ce

nt
of

m
ea

su
re
m
en

ts
be

lo
w

er
ro
r
th
re
sh

ol
d
fo
r
al
ld

at
a

F
ra
ct
io
na

lp
er
ce

nt
of

m
ea

su
re
m
en

ts
be

lo
w

er
ro
r
th
re
sh

ol
d
fo
r
al
ld

at
a

11
77

<
0.
05

0.
39

11
77

<
0.
05

0.
39

17
45

<
0.
1

0.
58

17
45

<
0.
1

0.
58

20
78

<
0.
15

0.
69

20
78

<
0.
15

0.
69

F
ra
ct
io
na

lp
er
ce

nt
of

m
ea

su
re
m
en

ts
be

lo
w

er
ro
r
th
re
sh

ol
d
fo
r
de

pt
h
>

2
m

F
ra
ct
io
na

lp
er
ce

nt
of

m
ea

su
re
m
en

ts
be

lo
w

er
ro
r
th
re
sh

ol
d
fo
r
di
sc

ha
rg
e
>
10

00
m

3
∕s

93
8

<
0.
05

0.
52

65
0

<
0.
05

0.
65

13
41

<
0.
1

0.
74

88
3

<
0.
1

0.
88

15
19

<
0.
15

0.
84

94
7

<
0.
15

0.
95

F
ra
ct
io
na

lp
er
ce

nt
of

m
ea

su
re
m
en

ts
be

lo
w

er
ro
r
th
re
sh

ol
d
fo
r
de

pt
h
>

3
m

F
ra
ct
io
na

lp
er
ce

nt
of

m
ea

su
re
m
en

ts
be

lo
w

er
ro
r
th
re
sh

ol
d
fo
r
di
sc

ha
rg
e
>
20

00
m

3
∕s

77
8

<
0.
05

0.
63

55
9

<
0.
05

0.
71

10
71

<
0.
1

0.
87

73
0

<
0.
1

0.
92

11
69

<
0.
15

0.
95

76
5

<
0.
15

0.
97

F
ra
ct
io
na

lp
er
ce

nt
=
P
er
ce

nt
di
vi
de

d
by

10
0;

F
ra
ct
io
na

lp
er
ce

nt
er
ro
r
=
R
S
Q

es
tim

at
ed

di
sc
ha

rg
e
di
vi
de

d
by

m
ea

su
re
d
di
sc
ha

rg
e.

Bjerklie et al.: Satellite remote sensing of river discharge: a framework for assessing the accuracy. . .

Journal of Applied Remote Sensing 014520-32 Jan–Mar 2023 • Vol. 17(1)



the overall accuracy of a discharge estimate as the river gets smaller. In other words, the effect of
observation error becomes less important as rivers get larger because the uncertainty becomes
a smaller percentage of the magnitude of the observed variable.

The reach lengths over which the averaging is accomplished may vary but fundamentally are
constrained by the distances between satellite overpasses and the orientation of the river in rela-
tion to its intersection with the satellite crossing locations. Consequently, the impact of the reach
on the average values is variable and somewhat unknown. Our assumption is that the reach
averaging will not introduce substantial uncertainty provided the reach length is > ∼ 10 rivers
widths78,79 and less than the distance between input tributaries. Uncertainty estimates of widths
based on Landsat classification- were made through comparison with published ground-based
values as well as those visually interpreted from finer-resolution satellite imagery collected
coincidentally with the Landsat scenes being evaluated.39,80 Estimates of uncertainty associated
with satellite-based altimeters have been assessed by Birkett et al.43 Bjerklie et al.15 summarize
these data sources and compare observations with ground observations for the Yukon River in
Alaska.

Here we look at how WSE error propagates into the estimates generated from the discharge
algorithm as presented in Eq. (3). It is assumed that r ¼ 2 and the three parameters B, nb, and x
are calibrated. The discharge uncertainty is calculated from the derivative of Eq. (3) with respect
to the change in height (dh) to characterize the sensitivity of the equation to the magnitude of h.
Using uncertainty quantification methods, the uncertainty in discharge due to the WSE obser-
vations is

EQ-TARGET;temp:intralink-;e006;116;484σ2Q ≈
�
dQ
dh

�
2

σ2h þ
�
dQ
dW

�
2

σ2W; (6)

where σQ is the discharge uncertainty due to WSE and width uncertainties, expressed as a stan-
dard deviation; σh and σW are the uncertainty standard deviation of WSE and width, respectively;
and the derivatives represent the sensitivity of discharge to WSE and width, respectively.
Equation (6) is approximate as it uses the first term in the Taylor series expansion of Q to re-
present the sensitivity of discharge to observations. The relation between the observations and
river discharge is given by combining Eqs. (3) and (4). Differentiating the combined Eqs. (3) and
(4), we use the law for derivative of a product to obtain

EQ-TARGET;temp:intralink-;e007;116;356

dQ
dh

¼ dn−1

dh
W

�
ðh − BÞ

�
1 −

1

1þ r

��
1.67

S0.5

þ 1.67

�
1 −

1

1þ r

�
W
n

�
ðh − BÞ

�
1 −

1

1þ r

��
0.67

S0.5; (7)

where the first term on the right-hand side of Eq. (7) is the derivative of n−1 and is given as

EQ-TARGET;temp:intralink-;e008;116;268

dn−1

dh
¼

�
1

nb

1

H − B
þ x

nb

ðH − BÞ2
ðh − BÞ3

�
exp

�
−x

�
H − B
h − B

��
: (8)

Finally, the sensitivity of discharge to width is given as

EQ-TARGET;temp:intralink-;e009;116;212

dQ
dW

¼ 1

n

�
ðh − BÞ

�
1 −

1

1þ r

��
1.67

S0.5: (9)

Thus, discharge uncertainty is computed by combining Eqs. (6)–(9). Relative discharge
uncertainty can be computed by dividing the result by Manning’s equation. One critical result
that can be seen from the mathematics is that the derivatives are all a function of WSE
themselves, and thus uncertainty changes with WSE; this is also true for the relative discharge
uncertainty (not shown analytically). We explore the relative uncertainty by varying WSE and
width values, along with width and WSE measurement uncertainty.

The resolution or uncertainty in the height observations for an example station on the
Delaware River ranges from 1 to 15 cm, and the resolution or uncertainty in the width obser-
vations range from 5 to 15 m (Fig. 12). The uncertainty is far greater at low values of stage, and
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thus at low flow (e.g., for a 10 cmWSE uncertainty) the relative discharge uncertainty is 40% at a
stage of 1 m, but only 5% at a stage of 5 m. Note that the discharge uncertainty due to width is
significantly lower, and furthermore is far less responsive to the width itself. These results
emphasize the importance of considering discharge uncertainty at a range of flows. The absolute
error in the discharge resulting from absolute error in stage (i.e., depth) and width is proportional,
as shown by Bjerklie et al.,26 because both width and stage are multiplicative elements discharge
continuity (e.g., Q ¼ W � Y � V). As such, the contribution of fixed error in width and stage
becomes a larger proportion of observational error as the width, stage, and discharge become
smaller.

Across all 30 rivers in the test data set, for 10 cmWSE error the 67th percentile of error yields
relative discharge uncertainty of 12% at median flow (Fig. 13). At low flow, most rivers have

Fig. 12 Example of the effect of observation uncertainty on discharge uncertainty for the Delaware
River data. (a) and (b) Discharge performance expressed as uncertainty as a function of the
uncertainty in height and width observations, respectively.

Fig. 13 Cumulative number of rivers (CDF) for the 30-river data set as a function of relative
discharge uncertainty assuming (a) a 10 cm and (b) 20 cm uncertainty in WSE observations.
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uncertainty <25%. A minority of rivers (90th percentile) are at a discharge uncertainty of 20% or
greater at median flow. Increasing theWSE error to 20 cmmakes a large change, with most rivers
(67th percentile) now at 23% discharge error. Error in width shows much less impact across
the 30 test rivers, as the assumed uncertainty in width observations does not constitute a large
portion of the total width of the water-surface. Additionally, the width is smoothed to reduce
random measurement error as previously discussed.

Assuming the error associated with the algorithm (model error) is on the order of 10%, for
approximately half of the rivers the observation error is larger than the model error. For nearly all
(85%) of the rivers, the error associated with the proxy satellite observations is a major or dom-
inant component of overall error. Depth controls most of the variability and observation error
dominates for shallower rivers. For some rivers, observation error is far greater than model error.

In summary, observation error will almost certainly remain a large part of the total discharge
uncertainty in remote sensing of discharge. Even when error in the observation of WSE is
<10 cm (which is a challenging goal) observation error will likely be greater than model error
in most rivers. WSE uncertainty varies with river stage, increasing at low flow.

2.2.1 Effect of slope and assumed regular cross-section (width) on
discharge estimates

Dynamic water-surface slope data were collected for the Tanana River near Fairbanks and used
to evaluate the effect of dynamic slope compared to static slope on algorithm-derived discharge
estimates. Unfortunately, there are few data sets available to provide a broader range of evalu-
ation. The Tanana River water-surface height was monitored at three locations along the river
reach that flows past the USGS streamgage at Fairbanks, AK (collected June 9–October 12,
2016; https://doi.org/10.5066/P9ZUUVPS). The height data was coupled with continuous
discharge data at the gage to derive a data set of reach averaged change in height, slope, and
discharge that spanned a several month period in 2016. Discharge estimates were derived from
the height and slope observations and compared with the USGS estimates based on the stage-
discharge rating curve at the gage (Fig. 14). The dynamic reach averaged width was not directly
measured and as such it was estimated based on a relation between stage and width derived from
observations of the maximum width and estimates of the bankfull depth, assuming that the river
channel is parabolic in shape (see Bjerklie et al.15). This was accomplished by fitting a parabola
with the width and depth defining the parabolic dimensions. The parabola is given as Y ¼ aW2

with Y being the depth andW the width. The coefficient a is set as the ratio of the bankfull depth,
Yb divided by the bankfull width,Wb

2, and the bankfull dimensions obtained from the discharge
measurement record as previously described. Riggs et al.13 have shown that reach averaged
widths improve overall accuracy of discharge estimates compared to using a cross-section width,
further supporting the value of width averaging. The assumption of a regular width derived from
the stage also provides a means to test the importance of the accuracy of width in the discharge
estimate algorithm.

Fig. 14 (a) The estimated discharge versus the observed discharge over the summer of 2016 for
the Tanana River at Fairbanks using the dynamic slope and assumed width and maximum
depth. (b) The estimated discharge using a constant slope versus the discharge estimated using
a dynamic slope only. USGS, U.S. Geological Survey.
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Bjerklie et al.26 have previously shown that assuming a constant slope does not degrade the
overall accuracy of discharge estimates using a Manning flow resistance law compared to using
measured dynamic slope. Similarly, the discharge estimates for the Tanana River derived from
assuming a constant slope compared to a dynamic slope show only a small reduction in accuracy
(on the order of 1% difference in overall mean). Additionally, the assumed width could be used
to derive accurate discharge estimates through calibration, indicating that width can be viewed
more or less as a scalar and need not necessarily be highly accurate compared to ground-
measured width provided the estimates can be calibrated. These results indicate that initial
values of discharge can be derived from appropriately scaled width and constant slope as a
precursor to full dynamic observations of width and slope without significant degradation of
estimate accuracy.

Additionally, the impact of using the measured width as opposed to a smoothed width that
enforces a monotonic relation between stage and width is explored. In particular, the rivers that
showed a relative nonlinear but regular pattern of stage versus width were recalibrated using
the observed width rather than the smoothed width, and the results were compared. These rivers
include the Susquehanna River at Marietta and Waverley, Delaware River, Connecticut River,
Potomac, Wenatchee, Platte and the Tanana at Fairbanks.

The Tanana at Fairbanks is the only river that shows a stage width relation where the width
increases more rapidly at a higher stage – interestingly this river produced a negative value of x
for the two-parameter calibration, indicating that the rapid increase in width resulted in increasing
flow resistance with increasing depth. Rerunning the calibration for these rivers using the observed
width showed improvement in the mean log residual for several of the rivers including the
Susquehanna at Marietta and Waverley, and the Platte with the NRMSE and the NSE remaining
the same. The low-end bias for both Susquehanna stations also diminished indicating the value
of a reliable observed reach averaged width where possible. However, given the present data set
with width not measured consistently at the same location, the width smoothing is necessary.
Additionally, width smoothing is necessary if stage and width are not measured at the same time.

2.3 Parameter Uncertainty

The Manning equation described by Eqs. (3) and (4) ingests measured variables of water-surface
slope, water-surface width, and water-surface height. The Manning equation parameters that
must be estimated for each river reach where the equation is applied include the bankfull and
bottom reference heights (H and B) from which the water depth is referenced; the bankfull
reference Manning n flow resistance (nb), which is the reference point from which Manning
n values at lower water-surface heights are referenced; the exponent x controls the variation of
Manning n with respect to the relative depth; and the channel cross-section geometry coefficient r.
As previously mentioned, we assume that the geometry coefficient is constant for all channels
with a power of 2 (parabolic). Parameter errors are offset by averaging and calibration—
minimizing the number of parameters to calibrate improves the overall accuracy of ground truth
hydraulics and provides more reasonably accurate values for the mean velocity and depth.

2.3.1 Manning n—flow resistance

In many ways parameterizing the resistance coefficient poses the greatest potential for model
error and may overwhelm the satellite measurement error in some rivers. Characterizing the
value and the error associated with the Manning flow resistance over the entire range of flows
in a river reach may be the greatest challenge associated with algorithm parameterization and
warrants a more comprehensive understanding of what it represents (refer to Sec. 2.1 and the
Appendix).

2.3.2 Bankfull and channel bottom reference heights (H and B) and
the linearity of the stage-width relation

Key to the development of RSQ is the need to identify a robust relation between the average
water-surface width and the WSE of the observed reach. This relation defines height as a
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function of width from which an estimate B can be extrapolated. The setting of the bottom sur-
face height (B) provides the reference for scaling the depth. The inverse relation, the width as a
function of height, provides a linear forcing of the relation between width and height such that it
is monotonic. This latter relation is essentially a width–height rating curve and acts to smooth
observational irregularities between height and width due to measurement error and observa-
tional resolution under the assumption that height and width must increase at a concordant rate
with discharge. Identification of a linear width–height relation may require more than one rela-
tion, if there are break points in the curve or if a shift has occurred in the channel as previously
noted in Sec. 2.2.1. As previously noted in Sec. 2.2.1, this smoothing does not introduce a large
amount of additional error in most cases; however, some rivers show improvement in the dis-
charge estimates where the stage–width relation shows a marked break in slope. This points to
the need for a robust quality assurance/quality control (QA/QC) of width measurements as part
of assessment of accuracy.

3 Predicting Initial Parameter Values and Ranking the Expected
Uncertainty of the Estimates for Each River Based on
Diagnostic Characteristics

Developing a robust assessment of discharge estimate error for river reaches with no ground truth
data for comparison will be very difficult given the range of assumptions, measurement error, and
impact of calibration. As a result, we propose bracketing the estimates within an expected range of
values derived from statistically based regime and flow relations that provide a “most probable
state.” The distance from this state would factor into the confidence in the potential accuracy of
the estimate. The range of expected values is termed diagnostics. The Manning equation yields
estimates of the discharge, mean depth, and mean velocity. These estimates can be compared to
general ranges for these variables with associated hydraulic state variables (including the Froude
number and the width-to-depth ratio) derived from statistical analysis of thousands of discharge
measurements made by the USGS.55 Additionally, bankfull hydraulic variables (regime varia-
bles) are estimated from a large data set of bankfull flow measurements in hundreds of rivers,24

and the shape of the stage (height)-discharge rating curve considered in the diagnostics.
The following are the proposed diagnostic relations that can be used to define the likely or

expected value for the estimated Froude number for each discharge estimate. As an assumption,
the Froude number is expected to not exceed a value of 1,67 and would be expected to be con-
siderably below 1 in most cases especially considering that the choice of reach would avoid
severe constrictions, hydraulic structures, and very steep slopes. The diagnostics can be applied
to the estimated bankfull (regime) flow conditions including the bankfull depth (Yb) and Froude
number (Fb), The diagnostic estimating equations are found in Refs. 24 and 15. The bankfull
estimate is critical for providing the reference point for scaling the Manning n and the depth.
If the values fall within the range predicted by the 95% confidence interval for Yb and Fb there
would be high confidence in the estimate. There would be low confidence if the estimate was
outside the 95% range. Values of Manning n are also checked against the expected range of
values as found in various literature reviews.61,62,81,82

We rely on bankfull diagnostics with the understanding that the bankfull state—including
width, depth, velocity, meander length,24 slope, and discharge are not precise values, and in fact,
may vary over time (often over short time periods). Consequently, we view these diagnostics as
important scaler quantities that form an expected state as a means to understand the likelihood
that the estimated values are within the expected range.

Bankfull velocity based on meander length (L) and slope (S) with 95% confidence range24

EQ-TARGET;temp:intralink-;e010;116;158

Vb ¼ 1.37 × ðLÞ0.31ðSÞ0.32 mean

Vb ¼ 1.00 × ðLÞ0.30ðSÞ0.26 lower 95%

Vb ¼ 1.88 × ðLÞ0.34ðSÞ0.37 upper 95%; (10)

EQ-TARGET;temp:intralink-;e011;116;80Vb ¼ 2.38 × ðLSÞ0.5; (11)

from Jansen et al.63
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Bankfull Depth based on bankfull width (W) and slope (S) with 95% confidence range24

EQ-TARGET;temp:intralink-;e012;116;553

Yb ¼ 0.08 ×W0.39S−0.24 mean

Yb ¼ 0.07 ×W0.34S−0.28 lower 95%

Yb ¼ 0.10 ×W0.43S−0.20 upper 95%: (12)

Bankfull Froude Number based on slope (S) with 95% confidence range15

EQ-TARGET;temp:intralink-;e013;116;476Fb ¼¼ 2.85 × S0.31 mean; (13)

where F ¼ Vffiffiffiffi
gY

p , Fb ¼¼ 2.34 × S0.28 lower 95%, Fb ¼¼ 3.47 × S0.34 upper 95%.

Relations between estimated and calibrated bankfull depths and Froude numbers indicate a
priori estimates of the bankfull depth and Froude number can be used to provide initial algorithm
parameters (Fig. 15).

Additional hydrologic information may help to understand uncertainty as well as constrain
parameter estimates. The hydrologic conditions within the watershed, either compiled from pub-
lished sources (e.g., USGS Gages-II database83) or derived using a GIS, can help differentiate
rivers with higher and lower uncertainty as measured by the NRMSE.69 Rivers with calibrated
NRMSE < 10% are clearly distinguished from those with NRMSE > 10% as a function of the
number of dams in the watershed (dam density) and as a function of the baseflow index (BFI)
(Fig. 16).

Fig. 15 Comparison of calibrated versus diagnostic estimates of bankfull depth (maximum in
channel) from Eq. (12) (a) and Froude number from Eq. 13 (b) for the 30-river data set.

Fig. 16 Box plots showing the differentiation between rivers with mean normalized root mean
square error (NRMSE) (a) greater (F ) and lesser (T ) than 15% as a function of dam density (dams
per 100∕km2 labeled damdens) and (b) greater and lesser than 10% as a function of baseflow
index (labeled BFI). The thick line is the median value in each box bounded by the 25th and 75th
quartiles, with whiskers denoting 1.5 times the interquartile range above and below the median,
and outliers are denoted as points.
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BFI is the ratio of volumetric ground-water discharge to a stream (baseflow) to total volu-
metric streamflow. Values were obtained for select USGS gage test sites83 or derived using a BFI
raster84 in ArcGIS as the average BFI within a drainage basin. BFI and NRMSE are negatively
correlated (R2 ¼ 0.37), indicating sites with higher groundwater supply to a stream and/or
low-flow dam releases from upstream and generally lower total streamflow, experience a higher
error in estimated discharge. Baseflow and dam density provide useful metrics for predicting
model performance (Fig. 16); however, readily accessible BFI datasets83,84 are only available for
the conterminous United States. Assessing metrics with known relationships to BFI and damn
density can provide a useful substitute in areas outside of the conterminous United States.

A positive relationship between baseflow and average slope in the watershed has been
demonstrated in various studies although it is less clear if increased basin slope drives increased
baseflow.85,86 Average watershed slopes for the test sites were obtained from Gages-II83 or
derived in ArcGIS Pro using 30-m resolution DEM from the USGS National Map data
delivery.87 A positive correlation between BFI and average basin slope is observed at the test
sites (R2 ¼ 0.52, Fig. 17); however, a much weaker negative correlation is observed between
NRMSE and average basin slope (R2 ¼ 0.08). There are a few sites with extremely high slopes
(slope > 35%; Snohomish River near Monroe, WA; Sagavanirktok River near Pump Station 3,
AK; Wenatchee River at Monitor, WA) and low slopes (slope < 5%; Neuse River near Clayton,
NC; Platte River near Agency, MO). These sites have the smallest drainage areas in the test
dataset, and therefore their average slope is more sensitive to changes in topography. If these
five sites are removed, the negative correlation between the average basin slope and NRMSE
becomes stronger (R2 ¼ 0.20, Fig. 17).

Expected error in RSQ increases as flow becomes more regulated, shown through the
increase in NRMSE as dam density increases (R2 ¼ 0.11, Fig. 17). Dam density is the number
of dams in the watershed per 100 km2 and was obtained for select USGS gage sites83 or derived
in ArcGIS using the U.S. Army Corps of Engineers National Inventory of Dams online Feature
Service hosted by Esri US Federal Data on ArcGIS Online.

Fig. 17 Various hydrologic aspects of the watershed can be used to predict expected error in
RSQ. (a) Expected error (normalized root mean square error, NRMSE) increases as baseflow
decreases and (b) dam density increases. (c) Average basin slope is well correlated to base-flow
index (BFI) and provides a more readily available metric. (d) Expected error increases as average
slope in the watershed decreases. Sites in red are excluded from the linear regression due to their
extreme slope values and small drainage basins.
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Additional diagnostics are based on the shape of the rating curve derived from the discharge
estimates and the WSE. The form of the rating curve based on general theoretical considerations
must be convex (e.g., cross-sectional area of flow and velocity increase with increasing dis-
charge) to some degree. One exception might be if the flow becomes super-critical, which is
not common in natural rivers.67 This means that discharge cannot decrease with increasing stage.
The shape serves as an indicator of the physical reality of the discharge estimates. Natural rivers
demonstrate a convex rating curve between height as a function of discharge,88 as shown below
for the Mississippi river (Fig. 18). The reason for this is based on continuity and the fact that
the river is an open channel—as stage increases so does the cross-sectional area of flow and
hydraulic radius, and thus discharge must also increase. This is based on the assumption that
the discharge cannot decrease below what the discharge was prior to stage increase, which is
not necessarily true if the slope is changing due to hysteresis (changing slope during rising and
falling limb of a flood wave). This study does not attempt to evaluate the effects of hysteresis
because the interval between satellite repeat observations is too long to capture the rapid dynam-
ics of the flood wave moving downstream, the reach length may exceed the flood wavelength,
and the Manning equation is not suited for rapidly varied flow conditions.48 Mean velocity in the
cross-section may decrease in some situations as stage increases because as stage increases addi-
tional roughness from vegetation and large obstructions (e.g., boulders) are encountered on the
banks and on side bars or additional channels are occupied (as in the case of braided channels), or
in rivers where the rate of increase in width increases faster than the rate of increase in WSE.

3.1 Overall Uncertainty

Considering the uncertainty associated with the algorithm, calibrated parameters, and measure-
ment error, it is possible to develop a general understanding of expected uncertainty (accuracy) in
the discharge estimates depending on flow regime. Combining the expected algorithm and
parameter estimation accuracy for a well calibrated model, we would expect accuracy on the
order of 10% of USGS ground-based values of discharge and a general input variable measure-
ment accuracy on the order of 10% (primarily measurement errors associated with WSE). With
these assumptions, the overall expected uncertainty would be ∼14% for most rivers using

EQ-TARGET;temp:intralink-;e014;116;188x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E12 þ E22

p
; (14)

where E1 is the uncertainty due to the algorithm and parameter estimates, and E2 is the uncer-
tainty due to input variable measurement error.

For rivers with a wide range of estimated Froude numbers and shallow slopes, as well as
rivers with high BFI and impacts from dams, the accuracy would decrease due to algorithm and
parameter uncertainty such that the expected algorithm uncertainty would increase up to 20% or
more even as measurement accuracy remains the same at 10%. Thus, according to Eq. (10) the
general expected accuracy would be on the order of 22%.

Fig. 18 Measurement data for the Mississippi River at Thebes Illinois showing the relationship
between discharge and water-surface height (the stage-discharge rating curve).
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However, as has been demonstrated, for most rivers the uncertainty associated with the algo-
rithm and parameter estimation as well as input data measurements increases significantly for
shallower depths (<3 m) and lower discharge (<1000 m3∕s). Thus, it can be said that as dis-
charge and depth decrease, uncertainty increases especially for those rivers that have shallow
slopes, are impacted by dams, and have a high BFI. The low discharge and shallow depth uncer-
tainty may increase to 50% or more and at higher flows and depths uncertainty is significantly
lower, which is key to understanding and applying the RSQ flow data.

In the context of an accuracy classification system the expectation would be that an RSQ
gage on a large river that is well calibrated (10 to 20 calibration points) and meets the assump-
tions of the flow law algorithm that is free of dams has a low BFI range of Froude numbers, and
a relatively steep slope would have good to fair discharge ratings (15% or less uncertainty).
Smaller rivers that do not meet the assumptions of the flow law algorithm, show a wide range
in Froude numbers, have relatively shallow slopes, have a relatively high BFI, and are impacted
by dams, would be expected to have fair to poor discharge ratings (15% or greater uncertainty).

4 Summary and Conclusions

Based on the results found in the application summarized here, average RSQ estimates for any
given river reach may be expected to have an uncertainty associated with the flow law model in
the range of 10% overall for most rivers given an adequate number of calibration points.
This would represent the uncertainty associated with the general algorithm that is presented.
Uncertainty may be reduced by using the nonlinear Manning n transformation [Eq. (15)] and
if width observations are reliable and coincident with the observations of stage, which will be
the case with data coming from the SWOT mission, scheduled to launch in December 2022.

Comparing the five error objective functions considered in this paper (NRMSE, KGE, NSE,
log residual, and percent residual) it is found that the KGE and NSE are highly correlated and
provide a similar analysis of the combined accuracy and dynamics of the estimates. The mean of
the log residual and the percent residual is also well correlated although often with opposite
signs, suggesting that these two measures provide similar information on the error also. The
NRMSE is not as well correlated with the other measures, indicating that it provides a uniquely
different perspective of error. None of the direct measures of error (logRes, pctRes, and NRMSE)
are well correlated with either the NSE or KGE. Overall, given the generally very good NSE and
KGE values, it can be surmised that the dynamics are well captured by the algorithm because of
the dynamic response of the WSE.

The number of adequate calibration points is considered to be <20 observations for most
rivers, with the mean and median converging to a stable KGE with six calibration points.
The error and uncertainty in the algorithm increase markedly for depths <3 m and at the low
end of discharge (<1000 m3∕s) for many rivers even after calibration. Some improvement in
the algorithm performance, with less overall uncertainty and less uncertainty at the low end of
discharge can be achieved using a non-linear Manning n transformation function.

Application of the discharge algorithm at river reaches with favorable characteristics is an
important qualifier. This study indicates that rivers with a wide range of Froude numbers (ratio of
maximum to minimum Froude number in the simulated record), have a significant number of
dams in the watershed and along the channel, and rivers exhibiting a high BFI are more likely to
have relatively large errors overall and particularly at the low end of the flow range. For rivers
that have a wide range of flow conditions with many discharge estimates below 1000 m3∕s and
depths < 3 m, it is recommended that the non-linear Manning transformation function be used
[Eq. (5)]. Although defining characteristics of the river reach including sinuosity, meander
length, valley slope, channel shape, etc. have not been specifically addressed in this study,
on-going investigations are working toward a more robust representation of the river reach
geometry for predicting discharge parameters.

Uncertainty associated with remote-sensing measurements in the expected range (WSE
10 cm and Width 15 m) introduces ∼10% to discharge estimates and is greatest at the low end
of discharge as rivers get shallower and narrower. If measurement uncertainty increases, dis-
charge uncertainty increases accordingly. Error in the measurement of WSE is key to evaluating
the magnitude of expected uncertainty in the discharge estimates. In general, the observation
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errors will be greater than the errors associated with the algorithm for a well calibrated model
(e.g., 20 calibration points).

Given adequate calibration with a measured bottom depth (B), the estimates of depth and
velocity yield realistic values for the hydraulic state of flow, as indexed by the Froude number
indicating that the estimates can also be used to assess changes in velocity and depth as discharge
changes, extending the potential for applications of the RSQ estimates.

Expected uncertainty, ranked low, moderate, or high (accuracy good, fair, poor) can be evalu-
ated as a function of hydrologic aspects of the watershed, and the range of depths and velocities
in the estimated flow. Estimated discharge error is expected to increase as BFI decreases, average
basin slope decreases, or dam density increases. Where calibration data are not available, RSQ
algorithm parameters can be estimated a priori using diagnostic relations. Although this study
does not address remote-sensing based estimates of overbank discharge (floods), it can be
surmised that uncertainty of flood estimates would be larger than for in-bank discharge because
of the increased complexity and difficulty in evaluating overbank flow resistance.

This paper presents an initial understanding of the error characteristics that would be
expected from the application of a flow resistance equation to model the dynamic discharge
in a wide range of rivers in diverse environments. This is an important consideration for many
potential applications where known accuracy would be critical. The largest source of uncertainty
in the model parameterization is likely to be the flow resistance in any given reach, and this can
vary significantly from reach to reach and with flow level. The use of a flow resistance-based
model can yield realistic hydraulic characteristics of the flow if flow resistance is properly char-
acterized and flow depth reasonably approximated. The study also shows that higher accuracy of
discharge estimates can be expected in larger, deeper, and unregulated rivers. This latter result
indicates that flow resistance becomes more predictable in larger rivers and points to the advanta-
geous use of remote sensing-based gaging stations on larger rivers. Additionally, this study has
shown that fewer than ten ground-based discharge measurements may be sufficient to calibrate a
river discharge gage especially on larger rivers, further indicating that limited resources may be
diverted to smaller rivers and streams.

Additional suggestions for the development of satellite-based streamflow gaging stations
include the use of methods (1) that can incorporate various sources of RS observations to create
greater temporal density, (2) that are hydraulically based (such as a flow resistance equation) that
can incorporate and be calibrated with velocity observations should they become available.
Given the dependency of accuracy on the size of the river, incorporating RSQ estimates into
existing ground-based streamflow gage networks can reduce the number of ground-based
measurements needed on larger rivers enabling the redeployment of ground-based resources to
gages on smaller streams and rivers.

5 Appendix

The Chezy equation can be derived by assuming that the gravitational forces driving the flow
(the channel slope) is balanced by the shearing forces at the boundary (friction and drag).89

EQ-TARGET;temp:intralink-;e015;116;242τ ¼ aρv2; (15)

where τ is the shear stress on the boundary expressed as a function of the velocity of flow, v, and
ρ is the mass density of the fluid. The constant a relates the velocity of the fluid to the resisting
shear forces at the bed and is assumed to represent the effects of friction and drag forces outside
of the turbulent boundary layer. Drag theory states that in fully turbulent flow, the viscous boun-
dary layer is small, and the effective velocity is zero at the boundary, with viscous shearing
(frictional) forces within the fluid decreasing as a function of distance from the boundary hence
the velocity increases as shear decreases away from the boundary.48,90 For any given state of flow,
the value of the constant a is related to the elements in the flow field that resist flow and create
shear including friction associated with boundary roughness and boundary material.

The reduction in shear away from the boundary is primarily due to a reduction in the normal
pressure exerted by the weight density (γ) of the fluid at the bed with decreasing depth of water
above the point of interest.48,51,89 The depth is represented by the hydraulic radius, R, which is
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the cross-sectional area divided by the wetted perimeter of flow, and for wide channels is
approximately the same as the mean depth of flow, which is the cross-sectional area divided by
the top width of flow. Thus, shearing force can also be equated to R and the channel slope, S,
(the frictional surface) of the bed, given by Eq. (16) where the variable S is the energy slope of
the flow reach

EQ-TARGET;temp:intralink-;e016;116;675τ ¼ γRS: (16)

Equating Eqs. (15) and (16) yields

EQ-TARGET;temp:intralink-;e017;116;634v ¼
ffiffiffiffiffiffiffiffiffi
gRS
a

r
; (17)

where g is the gravitational constant (9.8 m∕s2 in SI units), which is a constant for applications
on the earth’s surface. Taking the constants outside of the radical and defining a new constant C
Eq. (18) yields the Chezy Eq. (19) for steady uniform flow in a conduit or channel with V is the
mean velocity, R is the hydraulic radius (cross-sectional area divided by the wetted perimeter of
the cross-section), and C is the Chezy coefficient.

EQ-TARGET;temp:intralink-;e018;116;529C ¼
ffiffiffi
g
a

r
; (18)

EQ-TARGET;temp:intralink-;e019;116;472V ¼ C
ffiffiffiffiffiffi
RS

p
: (19)

Robert Manning48,89 empirically estimated the Chezy coefficient such that

EQ-TARGET;temp:intralink-;e020;116;447C ¼ R
n

0.17

; (20)

where n is the Manning resistance coefficient.
Substituting Eq. (20) into Eq. (19) results in the Manning equation

EQ-TARGET;temp:intralink-;e021;116;382V ¼ R0.67S0.5

n
: (21)
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