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Abstract

Significance: The identification and manipulation of spatially identified neuronal ensembles
with optical methods have been recently used to prove the causal link between neuronal ensem-
ble activity and learned behaviors. However, the standardization of a conceptual framework to
identify and manipulate neuronal ensembles from calcium imaging recordings is still lacking.

Aim: We propose a conceptual framework for the identification and manipulation of neuronal
ensembles using simultaneous calcium imaging and two-photon optogenetics in behaving mice.

Approach: We review the computational approaches that have been used to identify and
manipulate neuronal ensembles with single cell resolution during behavior in different brain
regions using all-optical methods.

Results: We proposed three steps as a conceptual framework that could be applied to calcium
imaging recordings to identify and manipulate neuronal ensembles in behaving mice: (1) trans-
formation of calcium transients into binary arrays; (2) identification of neuronal ensembles as
similar population vectors; and (3) targeting of neuronal ensemble members that significantly
impact behavioral performance.

Conclusions: The use of simultaneous two-photon calcium imaging and two-photon optoge-
netics allowed for the experimental demonstration of the causal relation of population activity
and learned behaviors. The standardization of analytical tools to identify and manipulate neuro-
nal ensembles could accelerate interventional experiments aiming to reprogram the brain in
normal and pathological conditions.
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1 Introduction

Neuroscience experiments aiming to causally relate learned behaviors to the activity of neurons
require the identification and manipulation of neuronal ensembles with high spatial resolution.1–3

Recently, the use of simultaneous two-photon calcium imaging and two-photon optogenetics
demonstrated that the activation of neuronal ensembles with nearly single cell resolution can
evoke learned behaviors in mice.4–8 In this context, a neuronal ensemble could be simply defined
as a group of neurons with coordinated activity that can trigger the execution of a learned
behavior.9 The idea that a group of neurons with recurrent activity could represent the basic
module of brain computations was first proposed decades ago by Lorente de Nó.10 Years later,
Hebb postulated that groups of neurons that fire together could increase their connectivity giving
rise to “cell assemblies.”11 Even though Lorente de Nó’s and Hebb’s postulates have been
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fundamental for neuroscience studies, the ultimate definition of “neuronal ensembles” is still
lacking in neuroscientific literature9 because different definitions are biased by the experimental
techniques used. Accordingly, there could be several approximations to define what a neuronal
ensemble is. (1) From the electrophysiological point of view, it has been proposed that neuronal
ensembles are groups of neurons with synchronous activity12 with high probability to have direct
synaptic connections.13 (2) From the calcium imaging point of view, neuronal ensembles are
groups of neurons with concomitant activity that represent similar features of sensory stimuli,14

movements,15 contextual memories,16 spatial maps,6 short-term memory,8 or social interactions.7

(3) From the anatomical point of view, neuronal ensembles are groups of neurons spatially and
functionally organized that increased their activity across different brain areas.17 (4) From the
theoretical point of view, neuronal ensembles are attractor points in dynamical systems.18,19 In
this review, we focus on all-optical interventional experiments using calcium imaging that, due to
technical limitations, cannot consider the anatomical arrangement of ensemble members in dif-
ferent brain areas, their synaptic connectivity, or a fine description of their temporal dynamics.
All of these considerations of an ultimate definition of what a neuronal ensemble is require the
further development of high spatial and high temporal resolution methods that are beyond the
scope of this review.20

We present a conceptual framework based on recent experiments combining calcium imaging
and two-photon optogenetics that were used to identify and manipulate neuronal ensembles with
single cell resolution to manipulate learned behaviors.4–8

Interventional experiments aiming to control learned behaviors in mice can be summarized as
follows: (1) implementation of a behavioral task and an optical window to the brain region
related to such behavior; (2) recording of population activity with high spatial resolution to iden-
tify neurons related to the correct execution of the learned task; (3) manipulation of targeted
neurons that can recall task-related neuronal ensembles; and (4) assessment of task performance
due to activation of targeted neurons (Fig. 1).

Several papers have reviewed in detail the microscope implementation for simultaneous
two-photon calcium imaging and two-photon optogenetics,2,3,21,22 the automatic identification
of neurons,23,24 the extraction of spikes from calcium transients,25,26 the detection of neuronal
ensembles from calcium imaging recordings,27,28 and the methodological steps to perform inter-
ventional experiments in behaving mice.29 Therefore, in this review, we focus on a practical
conceptual framework for the identification and manipulation of neuronal ensembles related
to behavior.

(a)

(b) (c)

Identification Manipulation

Behavior

Fig. 1 Interventional experiments in behaving mice. (a) Behavioral training and recording of the
brain area related to the task. (b) Identification of neuronal ensembles associated with the correct
execution of the learned task. (c) Manipulation of neuronal ensembles relevant to behavior.
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As with any technique used in neuroscience, calcium imaging has advantages and disadvan-
tages. The main advantage for interventional experiments is the high spatial resolution30,31 that
allows for the long-term recording of the same field of view32 to identify and target selected
neurons related to behavior.4–7 The main disadvantage of calcium imaging recordings is the low
temporal resolution that limits the interpretation of recorded data in terms of high temporal
resolution trajectories, dynamical systems, or population codes.33

Previous experiments have demonstrated that the activation of a single neuron rather than a
group of neurons could evoke some behavioral readout,34,35 but after several years, such
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Fig. 2 Conceptual framework for neuronal ensemble identification and manipulation. (a) Left:
Transformation of calcium transients into binary arrays. Right: Binary representation of population
activity, where rows represent neurons and columns represent time windows. (b) Left: Population
vectors extracted from binary arrays. Right: Multidimensional representation of population vectors.
Each dot depicts a population vector. Each cluster defines a neuronal ensemble that represents
similar groups of neurons with coordinated activity at different times. (c) Interventional experiments
using holographic two-photon optogenetics to target and recall neuronal ensembles relevant to
behavior.
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consequences were attributed to the reactivation of neuronal ensembles triggered by a single
neuron.36,37

In this review, we propose three steps as a conceptual framework for interventional experi-
ments during behavior: (1) transformation of calcium transients into binary arrays; (2) identifi-
cation of neuronal ensembles as similar population vectors; and (3) targeting of neuronal
ensemble members that significantly impact behavioral performance (Fig. 2).

The goal of this review is to propose a conceptual framework for the identification and
manipulation of neuronal ensembles related to learned behaviors using simultaneous two-photon
calcium imaging and two-photon optogenetics. In the next sections, we describe the main steps
of this conceptual framework and the restrictions and considerations to identify and manipulate
neuronal ensembles from calcium imaging recordings during behavior.

2 Transformation of Calcium Signals into Binary Arrays for Neuronal
Ensemble Identification in Behaving Mice

Even though last generation genetically encoded calcium indicators can report a single action
potential38,39 and two-photon optogenetics could have single spike precision,2,3,20 neuronal
ensemble identification for interventional experiments in behaving mice until now have used
bursts of action potentials and have not considered spike rates or synchrony with single spike
precision.4–7 Despite the fact that spike rates have been proposed as the underlying mechanism
for several brain computations,40 spike inference from calcium transients is not a trivial
transformation.26 Inferred spikes from optical recordings are limited by the sampling rate, the
expression levels of calcium indicators, and possibly being different in different cells.41 It has
been recently suggested that the use of nonlinear models to infer spikes from calcium transients
could yield results that resemble electrophysiological data;33 however, the limitation of the low
sampling rate from scanning microscopy used for in vivo experiments stills represents an
unavoidable limitation to design interventional experiments in behaving mice with single spike
synchrony. Recently, it has been demonstrated that spike inference from calcium transients com-
pared with electrical recordings produced different interpretations of population analyses and
individual neuron properties, highlighting that spike inference should be cautiously considered
at least for interventional experiments in behaving mice.33 On the other hand, it has been pro-
posed that the total spike count in a brief time window (100 ms) independent of the spike fre-
quency can guide behavior,42 indicating that bursting activity could be sufficient for
interventional experiments in behaving mice. Thus, because bursting activity represents a robust
measurement that can be extracted from calcium transients, we highlight the importance of the
rising phase of calcium transients for neuronal ensemble identification and manipulation
[Fig. 2(a)].14,43 Therefore, a robust approach for neuronal ensemble identification requires the
preprocessing of raw calcium transients to reflect bursts of action potentials. Simultaneous elec-
trophysiological and calcium imaging recordings demonstrated that detection of the positive
slopes of the first-time derivative from filtered calcium transients is sufficient for detecting burst-
ing activity.44,45 Time intervals of fluorescence rises evoked by bursting activity can be repre-
sented by ones and the absence of bursting activity by zeros.4,45,46 The transformation of the first-
time derivative into binary arrays requires a hard threshold procedure that is usually determined
by simultaneous imaging and electrophysiological recordings in vivo in the same experimental
conditions in which interventional experiments are performed. A high threshold could originate
sparse population activity requiring more trials for the identification of neuronal ensembles,
whereas a low threshold could make ensemble identification challenging due to spurious cor-
relations. The main advantages of the binary representation of population activity proposed here
are the reduction of processing times27,43 and the elimination of artifacts caused by the decreasing
phase of raw florescence signals,14,27 such advantages are fundamental for interventional experi-
ments in which animals are engaged in the task for a limited time.

3 Identification of Neuronal Ensembles as Similar Population Vectors

The bursting activity of recorded neurons could be visualized as a binary matrix of size N (neu-
rons) × T (time).44,47 From such a matrix, neuronal ensembles could be understood as population
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vectors that lie in “N” dimensions, where the number of dimensions represents the number of
recorded neurons44,46,47 [Fig. 2(b)]. The main advantage of representing neuronal ensembles as
population vectors is that vectorial analyses could be systematically implemented.9,43 In this way,
population metrics could be applied to measure the similarity of neuronal ensembles27 at differ-
ent trials of the behavioral task.4 On the other hand, because each population vector captures the
relation between all observed neurons, the metrics are independent of the length of the record-
ings, allowing for the rigorous comparison of the same population of neurons at different
times.9,43,48

A simple but robust visualization of the similarity between population vectors is the imple-
mentation of similarity maps.4,44,47,49 Similarity maps portray a square matrix that contains the
values of all possible combinations of population vectors. An advantage of representing the sim-
ilarity of population vectors as maps is that the similarity map can grow according to the length
of the recordings, providing new information at different times but keeping the previous metrics
unaltered.

The goal of neuronal ensemble identification for interventional experiments is to find groups
of neurons with coordinated activity that repeat at different times and that have a causal relation
to learned behaviors.48 It has been shown that similarity maps highlighting groups of neurons
with coordinated activity at different times can be factorized using singular value decomposition
(SVD) allowing for the identification of neuronal ensembles that are relevant to behavioral
performance.4 SVD is commonly used to decompose matrices into latent variables that represent
repetitive patterns.50 In the case of recordings from the primary visual cortex, it has been shown
that each factor extracted from SVD represents a neuronal ensemble that was active when a
different orientation of drifting-gratings was shown to awake mice.4,45,51

Recently, different algorithms from calcium imaging recordings have been used to study
population activity in mice4–8,14,45,46,51–57 (Table 1). The comparison of a subset of such algo-
rithms suggested that a graphical approach that leverages community structure represents the
most efficient algorithm to recover neuronal ensembles from simulated and experimental
data.27 However, such a graphical approach has not been tested for interventional experiments
aiming to modulate behavior in mice, making it difficult to summarize which algorithm is better
and why. On the other hand, dimensionality reduction algorithms usually have been applied in
neuroscience to infer latent variables, to define neuronal population trajectories, or for explor-
atory analyses;58 however, such techniques have not been used to identify and target neurons
related to learned behaviors in mice.

Table 1 Algorithms used for calcium imaging population analyses in mice: principal component
analysis (PCA), pairwise correlations, averaged activity of images, t-distributed stochastic neigh-
bor embedding (t-SNE), locally linear embedding (LLE), singular value decomposition (SVD), sim-
ilarity graph clustering (SGC), conditional random fields (CRFs), Laplacian eigenmaps.

Algorithm Input data Output data Validation References

PCA based Single neurons Trajectories,
ensembles

Shuffled datasets,
surrogate data

27, 54

Correlation Single neurons Ensembles Shuffled datasets 14, 56

Average activity Single neurons Ensembles Binary classifiers, sorting data 5–8

t-SNE Population vectors Ensembles Shuffled datasets 53, 57

LLE Population vectors Ensembles Shuffled datasets 55

SVD Population vectors Ensembles Similarity functions 4, 45, 51

SGC Population vectors Ensembles Surrogate data 27

CRFs Population vectors Ensembles ROC curves 4, 46

Laplacian
eigenmaps

Population
vectors

Trajectories,
ensembles

Supervised
decoders

52
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4 Targeting of Neuronal Ensemble Members that Could Influence
Learned Behaviors

Interventional experiments have used two different approaches to recall neuronal ensembles
related to learned behaviors.

On the one hand, a probabilistic graphical model was used to identify neurons with pattern
completion capability that can recall neuronal ensembles associated with the correct performance
of the learned behavior.4 In such graphs, nodes represent neurons, and edges represent functional
connections. In this way, graphs express the conditional interaction between neuronal ensemble
elements. Probabilistic graphical models not only capture the functional structure of neuronal
ensembles but also highlight the role of individual neurons in each experimental condition.
Graphical models could systematically measure the changes in functional connectivity due
to learning or optogenetic manipulation.46 It was demonstrated that the targeted activation of
neurons with pattern completion capability was able to recall neuronal ensembles related to the
correct execution of the learned task, improving behavioral performance or evoking the behav-
ioral outcome even in the absence of sensory stimuli.4

On the other hand, a different approach was the selection of targeted neurons based on the
averaged activity of all of the recorded neurons in the trials related to the learned task.5–8 It was
demonstrated that the simultaneous activation of 10 to 30 neurons was able to recruit neuronal
ensembles related to the learned behavior.

Both approaches relied on the identification of specific groups of neurons from calcium im-
aging recordings and the activation of selected neurons using two-photon optogenetics. These
studies suggest that the optogenetic activation of a handful group of neurons is sufficient for
triggering widespread neuronal ensembles that can modulate behavioral performance.

5 Restrictions and Considerations for the Manipulation of Neuronal
Ensembles Related to Behavior

The causal relation between neuronal ensembles and learned behaviors has been demonstrated
recently in different brain areas.4–8 In this review, we provided a conceptual framework tailored
for interventional experiments in behaving mice using simultaneous two-photon calcium imag-
ing and two-photon optogenetics.

The conceptual framework to identify and manipulate neuronal ensembles proposed in this
review was implemented for the analysis of calcium transients that represent bursting activity
disregarding spike rates. It has been extensively shown that spike rates from electrophysiological
recordings provide detailed information of brain computations. However, the technology to con-
trol single action potentials in many neurons simultaneously is still under development, so inter-
ventional experiments until now have not used single spike synchronization to drive learned
behaviors.4–6

Analyses on raw calcium transients to identify neuronal ensembles related to behavior lack
biological interpretability because correlations on raw calcium transients introduce artifacts due
to the slow decaying phase of calcium fluorescence.9,14,33

It is important to highlight that neuronal ensemble analyses related to behavior should be
validated by controlled experimental conditions; in other words, for “x” controlled experimental
conditions, there should be at least “x” neuronal ensembles that match accordingly each exper-
imental condition.27,48 Different approaches could be used to measure if the classification of
ensembles is correct, from decoding algorithms5,46 to the use of synthetic data that preserves
the statistical properties of experimental data.27 However, the strongest argument available for
the correct classification of ensembles in interventional experiments is the fact that the reacti-
vation of targeted ensembles related to a learned behavior can evoke such behavior and that the
targeting of different ensembles cannot evoke the learned behavior. In this way, even though
putative neuronal ensembles could be identified for different brain states, the ultimate proof that
a neuronal ensemble is relevant for a learned behavior requires the precise reactivation of such an
ensemble with high spatial resolution.

On the other hand, performing independent analyses on the same datasets could be useful for
validating the identification of neuronal ensembles. For example, after the identification of
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neuronal ensembles using any method on population vectors, the correlation between the neu-
rons that belong to a defined neuronal ensemble could be used to corroborate that the neurons
identified as an ensemble indeed have coordinated activity,4,45 such corroboration does not re-
present a circular argument because the identification of neuronal ensembles on population vec-
tors is based on frame similarity that is independent of pairwise correlations between neurons.27

It is worth mentioning that two-photon optogenetics can produce spurious activation of non-
targeted neurons within a radius of ∼40 μm,2,3,21,45 due to movement artifacts or anatomical
overlapping. However, it has been demonstrated that the stimulation of randomly selected
neurons, in areas where neuronal ensembles are sparsely distributed, rarely coactivate other neu-
rons,4,5,45 suggesting that off-target activation of neurons would not have a significant effect on
the identity of behaviorally relevant ensembles.

Despite that several laboratories can record and manipulate neuronal populations simulta-
neously, the approaches to identifying which neurons should be targeted are heterogeneous
among research groups. The conceptual framework proposed here for the identification and
manipulation of neuronal ensembles in behaving mice could provide a first step to standardizing
metrics across laboratories and experimental conditions.

The next generation of interventional experiments should consider not only the recalling of
ensembles at behavioral time scales59 but also the sequential activation of different ensembles
that could be related to different stages of the behavioral task in the study.1 Conceptually, each
ensemble could be represented as a node in a graph, and transitions between ensembles could be
represented as edges.44,49,51

Finally, it has been proposed that the alteration of neuronal ensembles could be related to
movement deficits,55,60 memory impairments,16,61,62 or perceptual deficits,54 suggesting that the
conceptual framework proposed here could be used to identify neuronal ensembles in different
brain regions and create stimulation protocols to revert neuropathological conditions, allowing
for the precise reprograming of awry neural microcircuits with single cell resolution.
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