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Abstract

Significance: As an early stage of Alzheimer’s disease (AD), the diagnosis of amnestic mild
cognitive impairment (aMCI) has important clinical value for timely intervention of AD.
Functional near-infrared spectroscopy (fNIRS)-based resting-state brain connectivity analysis,
which could provide an economic and quick screening strategy for aMCI, remains to be exten-
sively investigated.

Aim: This study aimed to verify the feasibility of fNIRS-based resting-state brain connectivity
for evaluating brain function in patients with aMCI, and to determine an early screening model
for auxiliary diagnosis.

Approach: The resting-state fNIRS was utilized for exploring the changes in functional con-
nectivity of 64 patients with aMCI. The region of interest (ROI)-based and channel-based con-
nections with significant inter-group differences have been extracted through the two-sample t-
tests and the receiver operating characteristic (ROC). These connections with specificity and
sensitivity were then taken as features for classification.

Results: Comparedwith healthy controls, connections of theMCI groupwere significantly reduced
between the bilateral prefrontal, parietal, occipital, and right temporal lobes. Specifically, the long-
range connections from prefrontal to occipital lobe, and from prefrontal to parietal lobe, exhibited
stronger identifiability (area under the ROC curve > 0.65, **p < 0.01). Subsequently, the optimal
classification accuracy of ROI-based connections was 71.59%. Furthermore, the most responsive
connections were located between the right dorsolateral prefrontal lobe and the left occipital lobe,
concomitant with the highest classification accuracy of 73.86%.

Conclusion: Our findings indicate that fNIRS-based resting-state functional connectivity analy-
sis could support MCI diagnosis. Notably, long-range connections involving the prefrontal and
occipital lobes have the potential to be efficient biomarkers.
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1 Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder among the elderly. It
damages brain cells and nerves, and disturbs the storage and transmission of information in the
brain. It is even potentially fatal without timely intervention. According to the statistics of the
World Health Organization, more than 9.9 million new cases of dementia are diagnosed world-
wide every year, of which about 60% to 70% are classified as AD.1 Although scientists agree that
the disease is associated with abnormalities of certain specific proteins (beta-amyloid and tau) in
the brain, unfortunately the cause of AD is still unclear, and about 70% of the risks are con-
sidered hereditary. Mild cognitive impairment (MCI) is usually recognized as the prodromal
stage of AD. Annually, MCI patients tend to convert to AD with a clinical conversion rate higher
than 10%, while it is only 1% to 2% in healthy controls.2,3 In amnestic MCI (aMCI), the con-
version rate is even higher. Therefore, early identification of MCI is crucial for timely interven-
tion of potential AD patients. More importantly, with the acceleration of aging, professional
doctors for AD are in short supply, so fast and economical screening methods suitable for large
population are increasingly needed.

Functional connectivity analysis has been widely used in the evaluation of brain function.4,5

The human brain is structurally a complex network composed of a large number of neurons and
nerve fibers, and various regions of the brain are interrelated..6,7 Some synchronous low-
frequency fluctuations are associated with neural activity between some brain regions at even
resting state, which indicates that organized activities between different brain regions contribute
to maintaining the mechanism of brain activity.8 AD is increasingly viewed as a disease with
multiple dysfunctional large-scale neuronal networks rather than a localized abnormality, which
makes it feasible to detect the brain anomalies from the perspective of resting-state functional
connectivity (rs-FC). The rs-FC analysis has received increasing attention in the subtle network
abnormalities of AD or MCI. Sheline et al.9 and Oh et al.10 applied functional magnetic reso-
nance imaging (fMRI)-based rs-FC to reveal that, the connectivity of the default mode network
in cognitively normal elderly is significantly reduced when beta-amyloid increases. Drzezga
et al.11 reported that the whole-brain connectivity was positively correlated with metabolism
and negatively correlated with amyloid burden. Similarly, Wang et al.12 and Liu et al.13 adopted
fMRI-based rs-FC to determine the abnormal functional connectivity in patients with MCI.
Reduced connection has been detected in the regions of left dorsolateral superior frontal gyrus,
the right orbital frontal gyrus and left inferior temporal gyrus.

Functional near-infrared spectroscopy (fNIRS) is a new non-invasive brain imaging technol-
ogy with unique advantages in clinical application, such as high portability and low running cost,
relative robust-ness against motion and electrical artifacts. Compared with some existing
classical brain imaging technologies like fMRI, EEG, or PET, fNIRS is more friendly to the
subjects and more suitable for monitoring under clinical conditions, which has aroused the inter-
est of many brain function researchers. Niu et al.14 and Li et al. have manifested that the brain FC
and related graph metrics have high stability in resting state. Tan et al.15 applied fNIRS-based
rs-FC to explore synchronization of blood oxygen signals between bilateral prefrontal cortex,
they found the brain FC of the elderly are weaker than the young in certain frequency bands.

fNIRS has also been used to explore the blood oxygen level dependence of patients with MCI
or AD. Viola et al.16 reported that tissue oxygenation of prefrontal lobe and temporal parietal
cortex in aMCI patients was lower than that in healthy control group. In 2014, Liu et al.17 found
that the cerebral blood flow and cerebral blood oxygen metabolism of aMCI patients were lower
than those of healthy people. Moreover, some task-related experiments were also used to deter-
mine changes in brain function, of which word retrieval is the most commonly used one. Yeung
and Chan18 found that the activation of frontal temporal lobe or parietal cortex in aMCI patients
was less, and the lateral response of prefrontal lobe also changed. Zeller et al.19 analyzed sponta-
neous low frequency oscillations (LFO) with fNIRS and observed a decreased LFO of the pari-
etal cortex for aMCI group. As far as we know, only three fNIRS studies involve changes in
functional connectivity in MCI patients. Niu et al.14 detected the brains of MCI and AD in the
resting state. Although abnormal dynamic FCs were obtained in 23 patients, no differences
between groups were found in the resting state FC. Nguyen et al.20 used four monitoring chan-
nels to record FC of aMCI patients and reported changes in internal and internal connections in
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the cerebral hemisphere of aMCI patients. Bu et al.21 investigated the resting-state effective con-
nectivity (EC) in 26 aMCI patients and claimed a significantly decreased EC among prefrontal,
motor, and occipital cortex.

To sum up, fNIRS-based rs-FC analysis has the potential to provide economic and fast screen-
ing strategies for MCI. It not only requires less preparation and monitoring period, but also is
suitable for cognitive impairment patients who cannot complete complex tasks well. Thus, clini-
cians could record functional data at various stages of MCI, which is crucial for early diagnosis of
the disease and evaluation of drugs and therapeutic effects. However, at present, effective biologi-
cal markers based on fNIRS rs-FC need further exploration. In view of this, we aimed to explore an
early screening model for MCI. Specifically, the resting-state fNIRS was utilized for determining
the changes of functional connectivity of 64 patients with MCI. According to the significant
differences of functional connectivity between aMCI and HC groups, the cortical region of lesions
induced by aMCI has been extracted as a critical area for diagnosis. On this basis, we have high-
lighted the most sensitive cortical position and suggested a simpler screening strategy.

2 Materials and Method

2.1 Participants

With the help of the professional neurologists and the community hospital, 150 participants were
recruited in this study. After excluding the participants who did not complete the experiment or
whose data quality did not meet the requirements [channel signals with signal-to-noise ratio
(SNR) < 10 dB], a total of 128 samples were used for further analysis, including 64 patients
with aMCI and 64 healthy controls. All the participants were assessed by the mini-mental state
examination (MMSE) and the Montreal cognitive assessment (MoCA), which are brief cognitive
screening tools that have been developed for the screening of patients with MCI. Independent
sample t-tests were run to examine group differences in age and neuropsychological scores, and
the gender proportions were analyzed using the χ2 test. The specific scores and demographic
information of the subjects were given in Table 1. There was no significant difference in age and
gender between HC and aMCI groups, but the scale scores were on the contrary. This study was
conducted according to the declaration of Helsinki and approved by the local Ethics Committee
of Beihang University.

2.2 Data Acquisition and Preprocessing

The fNIRS signals were acquired using a multichannel fNIRS system (NirScan-8000A,
HuiChuang, China) with two wavelengths (730 nm, 850 nm) at a sampling rate of 19 Hz. It
supports the automatic adjustment of the source power and detector gain to optimize signal
quality.

The SNR was evaluated from the time series d (raw light intensity, d > 0) of each mea-
surement channel, where the mean of d was considered as “signal,” and the standard deviation
of d was considered as “noise.” Then SNR was calculated as follows:22 SNR = mean ðdÞ∕std (d).
Subsequently, the SNR values were converted to dB by a logarithmic operation. The average
SNR of channels used was 39.2� 14.5 dB. The arrangement of measuring channels covered the

Table 1 Socio-demographic information for the present study.

HC aMCI p

Age 66.98� 5.23 67.45� 4.91 0.60

Gender 37M/27F 29M/35F 0.16

MMSE 27.72� 1.65 25.31� 2.43 <0.01

MoCA 25.23� 2.1 19.72� 1.84 <0.01
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prefrontal lobe, temporal lobe, parietal lobe, and occipital lobe of the brain, consisted of 22
sources and 31 detectors. The 71 measurement channels were grouped into nine anatomic
macro-areas for further analysis (see Fig. 1). A three-dimensional digitizer was utilized to mea-
sure the spatial location of each optode for all participants. Then the NIRS-SPM software was
used to access each channel’s mean Montreal Neurological Institute (MNI) standard coordi-
nates,23 which were given in Table 2.

The experiment was performed in a confined and moderately dim room to reduce any
disturbance to the participants from the environment. During the experiment, subjects were
seated in a comfortable chair and were required to stay relaxed without any extra movement.
Subsequently, 10 min of resting-state data were collected for each subject.

The NirSpark (HuiChuang, China) was applied to preprocess obtained signals. Motion arti-
facts affect functional connectivity analysis deeply and has attracted much attention.24–26 The
moving standard deviation and spline interpolation methods24 (SDThresh = 20, AMPThresh
= 3, tMotion = 0.5s, tMask = 1s and p = 0.99) were applied to amend motion artifacts caused
by the relative sliding of the scalp and probes. Subsequently, 0.01 to 0.1 Hz bandpass filtering
was performed to remove systematic physiological noises such as pulse and respiration.27 Then
the modified Beer–Lambert law was used to transform light intensity into the relative change
of hemoglobin concentration. The differential path-length factor was set to 6.0.28,29 In 2007,
Hoshi30 investigated the relationship between NIRS signals and cortical blood flow (CBF)
through a developed perfused rat brain mode. He confirmed that oxygenated hemoglobin (HbO)
is more consistent with CBF variations than deoxygenated hemoglobin (HbR) and is a more
sensitive indicator in NIRS measurements. Similarly, HbO was reported to have a relatively
higher SNR than HbR in subsequent studies.31,32 Thus, we have presented the following result
through the time series of HbO signals.

2.3 Brain Functional Connectivity

The Pearson’s correlation coefficient has been calculated to determine the functional connection
between each pair of measurement channels. Thus, a 71 × 71 correlation matrix would be gen-
erated for each participant. Subsequently, Fisher’s r-to-z transformation was applied to convert
these correlation coefficients to z-scores for improved normality.

Fig. 1 The arrangement of measuring channels. Each ball represented a channel (CH), and the
color indicated which region the channel belongs to. The nine ROIs were as follow: LPF = left
prefrontal lobe; RPF = right prefrontal lobe; LT = left temporal lobe; P = superior parietal lobe;
RT = right temporal lobe; LIP = left inferior parietal lobe; RIP = right inferior parietal lobe; LO =
left occipital lobe; and RO = right occipital lobe.
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Changes in functional connectivity were observed from three perspectives: whole-brain aver-
aged, region of interest (ROI)-based, and channel-based. In ROI analysis, 71 measurement chan-
nels were divided into nine brain regions based on their location (see Table 2), including the left
prefrontal lobe (LPF), right prefrontal lobe (RPF), left temporal lobe (LT), superior parietal lobe
(P), right temporal lobe (RT), left inferior parietal lobe (LIP), right inferior parietal lobe (RIP),
left occipital lobe (LO), and right occipital lobe (RO). Then the time series of the nine ROIs’
internal channels were averaged to obtain ROI-based z-scores.

2.4 Statistical Analysis

The two-sample t-tests and false discovery rate (FDR) correction were employed to compare
differences in functional connections between the MCI and HC groups. Seventy-one channels
constituted ð71 × 70∕2Þ ¼ 2485 undirected connections for each subject. Taking channel-based
analysis as an example, the unpaired t-tests were used to calculate group differences for these
connections, resulting in a total of 2485 modified p values after FDR correction. Where p values
<0.05 were considered to be significantly different (*p < 0.05), while <0.01 were considered to
be extremely significantly different (**p < 0.01).

Furthermore, the receiver operating characteristic (ROC) curve approach was adopted to
assess the sensitivity and specificity of these differential connections. The area under the
ROC curve (AUC) was conducted to quantify the performances of these features in identify-
ing MCI.

Afterwards, connections with significant differences were extracted as features input to a
linear discriminant analysis (LDA) for classification. Based on the AUC values and modified
p values, six ROI-based (AUC > 0.65) and four channel-based (**p < 0.01), individually or
in combination, participated in the model training. Then 5-fold cross-validation classification
accuracies were reported.33,34 Specifically, 62 MCI samples were randomly split into training
and validation set (4:1), as well as the HC group. To reduce the uncertainty of the random com-
ponent and improve the stability of the classification performance, the above steps were repeated
N ¼ 10 times and averaged before presentation.

3 Result

3.1 Whole-Brain Mean Functional Connectivity

To verify the effect of MCI on functional connectivity of the whole brain, all the 2485 connec-
tions (z-scores) were averaged for each participant. Then two-sample t-tests were applied to
calculate the inter-group differences, as shown in Fig. 2. Compared with the HC group, the

Fig. 2 The inter-group differences in whole-brain mean functional connectivity. Black and grey
points represent the HC and MCI groups, respectively. Asterisk indicates an extremely significant
difference (� � p < 0.01).
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MCI group has significantly weakened [tð126Þ ¼ 2.79, **p < 0.01] functional connections
(mean� SD: 0.85� 0.22 and 0.74� 0.21, respectively).

3.2 ROI-Based Functional Connectivity

All 71 channels were divided into nine ROIs to further explore the between-ROI connectivity
characteristics. Two-sample t-tests and FDR correction were applied to extract critical areas
lesions induced by MCI. There were 19 connections with significant inter-group differences
(*p < 0.05), most of which involved the bilateral prefrontal, occipital, and inferior parietal lobes,
as shown in Fig. 3.

To further identify the variation of long-distance connections in patients with MCI, the
ROC analysis was carried out to determine the sensitivity and specificity of 19 connections.
Specifically, the higher AUC value represents a better balance between specificity and sensitiv-
ity, which means that it may have better recognition performance for MCI. Figure 4(a) shows the
results of the top six long-distance connections in ascending order: RPF-RO, RPF-LIP, LPF-LO,
RPF-P, LPF-P, and RPF-LO (the AUC values are 0.651, 0.653, 0.656, 0.656, 0.664, and 0.682,
respectively).

The group differences in the top six ROI-based functional connections are shown in
Fig. 4(b). Compared with the HC group, the MCI group exhibited significantly reduced cross-
interval brain functional connectivity in RPF-RO [MCI: 0.69� 0.25; HC: 0.83� 0.26;
tð126Þ ¼ 3.19, **p ¼ 0.002], RPF-LIP [MCI: 0.63� 0.26; HC: 0.78� 0.27; tð126Þ ¼ 3.22,
**p ¼ 0.002], LPF-LO [MCI: 0.63� 0.26; HC: 0.78� 0.25; tð126Þ ¼ 3.31, **p ¼ 0.001],
RPF-P [MCI: 0.54� 0.22; HC: 0.69� 0.28; tð126Þ ¼ 3.42, **p < 0.001], LPF-P [MCI:
0.49� 0.25; HC: 0.64� 0.28; tð126Þ ¼ 3.14, **p ¼ 0.002], and RPF-LO [MCI: 0.60� 0.23;
HC: 0.77� 0.23; tð126Þ ¼ 4.08, **p < 0.001].

3.3 Channel-Based Functional Connectivity

Similarly, the inter-group differences in channel-based FCs between groups were also calculated
by t-tests and FDR correction. As shown in Fig. 5(a), a total of 138 connections had significant
inter-group differences. Moreover, in order to confirm the most sensitive cortical location and
reduce the feature dimension for classification, four connections with p values <0.01 were
screened out Fig. 5(b)]. Specifically, they were CH15-CH57 (sensitivity = 63.6%, specificity =
67.1%), CH16-CH59 (sensitivity = 59.1%, specificity = 70.5%), CH16-CH57 (sensitivity =
61.4%, specificity = 68.2%), CH15-CH59 (sensitivity = 67.2%, specificity = 70.3%), respec-
tively, and all belonged to the connection between the right dorsolateral prefrontal lobe and the
left occipital lobe.

Fig. 3 Regional differences in functional connectivity. Red lines indicate significant inter-group
differences in the regional connection.
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3.4 Classification

For the need of clinical diagnosis, the effective prediction of MCI through a small number of
monitoring channels will help to improve the screening efficiency. Based on the AUC values and
modified p values, six ROI-based (AUC > 0.65) and four channel-based (**p < 0.01) partici-
pated in the model training.

The classification accuracies are given in Table 3. RPF-LO performed best for the ROI-
based classification, and was consistent with AUC values. The optimal classification accuracy
was 71.59%, and the mean classification accuracy was 66.48� 2.79%. For the channel-based
classification, CH15-CH59 contributed comparatively desirable performance with an optimal
classification accuracy of 73.86% and an average classification accuracy of 68.41� 2.82%.

Fig. 4 (a) The ROC curves of the top six long-range connections in ascending order: RPF-RO
(orange), RPF-LIP (purple), LPF-LO (blue), RPF-P (green), LPF-P (black), and RPF-LO (red).
(b) The inter-group differences in the top six ROI-based functional connections. The color settings
of the connections are consistent with (a). Circles and triangles represent the HC and MCI groups,
respectively. Asterisk indicates an extremely significant difference (**p < 0.01).
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4 Discussion

In the present study, we explored the changes of functional connectivity of 64 patients with MCI.
Ulteriorly, relatively sensitive connections were extracted to identify MCI at both channel- and
ROI- levels.

For the whole-brain perspective, the MCI group had significantly reduced functional con-
nectivity (**p < 0.01), indicating that cognitive decline is widespread across the brain. It may be
related to hypoperfusion and hypometabolic patterns in MCI patients. In 2015, Li et al.35

reported significant hypoperfusion in the prefrontal cortex of MCI patients using a meta-analysis
of 39 fMRI-based studies. Similarly, Coutinho et al.36 found hypoperfusion in the prefrontal and

Fig. 5 (a) Channel-based connections with inter-group differences (�p < 0.05). (b) Connections
with highly significant difference (**� � p < 0.01).

Table 3 The classification accuracies of ROI-based and channel-based connections.

N 1 2 3 4 5 6 7 8 9 10 Mean value

ROI-based

RPF-RO 67.05%64.77%61.36%65.91%62.50%67.05%62.50%67.05%65.91%62.50% 64.66� 2.13%

RPF-LIP 60.23%62.50%61.36%63.64%62.50%67.05%62.50%62.50%63.64%69.32% 63.52� 2.56%

LPF-LO 60.23%65.91%62.50%64.77%65.91%64.77%60.23%68.18%70.45%59.09% 64.20� 3.49%

RPF-P 65.91%61.36%60.23%63.64%65.91%67.05%61.36%63.64%61.36%67.05% 63.75� 2.46%

LPF-P 60.23%67.05%64.77%60.23%62.50%63.64%63.64%64.77%68.18%65.91% 64.09� 2.50%

RPF-LO 63.64%62.50%63.64%67.05%64.77%65.91%69.32%71.59%69.32%67.05% 66.48� 2.79%

All above 65.91%65.91%69.32%67.05%62.50%67.05%62.50%65.91%64.77%59.09% 65.00� 2.78%

Channel-based

CH15-CH57 63.64%71.59%62.50%60.23%69.32%64.77%60.23%64.77%63.64%60.23% 64.09� 3.64%

CH16-CH59 62.50%69.32%67.05%62.50%64.77%63.64%68.18%60.23%63.64%61.36% 64.32� 2.84%

CH16-CH57 62.50%71.59%63.64%61.36%68.18%61.36%62.50%68.18%69.32%63.64% 65.23� 3.53%

CH15-CH59 69.32%65.91%65.91%67.05%71.59%64.77%65.91%73.86%69.32%70.45%68.41� 2.82%

All above 67.05%69.32%63.64%68.18%65.91%63.64%64.77%62.50%68.18%64.77% 65.80� 2.18%
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temporal lobes of MCI patients, which was more pronounced in AD patients. This cerebro-
vascular dysfunction is likely to result in weaker low-frequency blood flow turbulence, reduce
tissue oxygenation levels in the cerebral cortex, and trigger a decline in global cerebral syner-
gistic capacity. Based on these phenomena, researchers16,37 have come to believe that the abnor-
malities in functional connectivity may potentially aid in identifying MCI.

With respect to the ROI-based results, there were severe losses of long-range connections
between the brain regions of patients with MCI. Specifically, connections were significantly
reduced between the bilateral prefrontal, parietal, occipital, and right temporal lobes. It implies
that MCI induces a decrease in the efficiency of information exchange between various parts of
cortical areas, with clinical manifestations of diminished brain coordination. The prefrontal cor-
tex is mainly involved in some advanced cognitive processing, while the parietal, temporal, and
occipital lobes are responsible primarily for the processing of sensory, auditory, and visual infor-
mation. The diminished communication between these brain regions is consistent with clinical
symptoms of MCI patients, including dysfunction of executive function, attention, visuospatial
functions, and memory. In 2012, Brier et al.38 have reported the loss of functional connectivity in
large-scale networks of MCI patients using rs-fMRI, including default networks and sensory
motor network, etc. Bu et al.21 investigated functional connectivity in aMCI and found that
changes were principally between the bilateral prefrontal and occipital lobes. This could be
attributed to anatomical changes such as loss of white matter. For example, some previous
studies39 have revealed that callosal degeneration in MCI patients leads to abnormal information
exchange between the bilateral brains. Correspondingly, the ROI-based results mentioned above
also showed a significant decrease in connectivity at corresponding locations in both cortical
layers.

Notably, from the ROI-based AUC values, connections between brain regions at greater dis-
tances were more impaired (from prefrontal to occipital lobe, or from prefrontal to parietal lobe).
Liang et al.40 evaluated the causal connections of cortical networks in aMCI patients and also
found missing connections between prefrontal and inferior parietal lobules in the frontoparietal
control network. Agosta et al.41 reported that early AD patients are characterized by loss of
functional connectivity in the posterior part of the brain, particularly in the parietal lobe.
Consequently, long-range connections based on rs-fNIRS hold promise as sensitive biomarkers
for MCI.

For the channel-based perspective, consistent with ROI-based results, defective connections
were distributed predominantly between frontal, parietal and occipital lobes. Weakness in
wide-ranging connectivity again indicates degenerative changes in multiple brain regions in
MCI patients; nevertheless, the extent of damage within the same region may not be consistent.
As seen from the distribution of connections with deeply significant differences (� � p < 0.01),
the most responsive connections were located between the right dorsolateral prefrontal lobe and
the left occipital lobe. The right dorsolateral prefrontal cortex is associated with episodic
memory, and its impairment may result in severe deterioration of self-memory, while tentorial
memory loss happens to be the early symptoms in AD patients. It implies that the right dorso-
lateral prefrontal cortex may be one of the critical cortical lesions in MCI. We believe this may be
related to cortical hypometabolism. Drzezga et al.11 have shown that increased amyloid
deposition in cortical hubs induces a decrease in neuronal viability and hypometabolism, and
spatially overlaps with the interruption of functional connectivity. Hypometabolism also further
results in vasoconstriction and white matter deletion. In particular, energy is more concentrated
in long-distance transmission. When white matter is injured, in order to improve energy effi-
ciency, more effective interaction paths are selected, resulting in a weakening of long-scale
connections.

To screen out features that are both sensitive and specific, we ranked ROI-based and channel-
based connections by ROC analysis. Then LDAwas used to train classification models, and the
results showed that RPF-LO had comparatively ideal classification performance in the ROI-
based perspective and could be used as a potential neural marker. Additionally, the connection
between the right dorsolateral prefrontal cortex and the left occipital lobe also exhibited slightly
stronger identifiability in the channel-based perspective. It means that clinicians could attain
sensitive biomarkers through a small number of probe arrangements to confirm MCI rapidly
and repeatedly. It opens up possibilities of large-scale MCI screening and auxiliary diagnosis.
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Moreover, the current conclusion still requires more samples and research to verify the
stability.

In summary, MCI reduces CBF and induces structural changes, leading to a decline in the
ability to collaborate between functional areas. Functional connectivity analysis based on rs-
fNIRS has the potential to be a neural marker for identifying MCI, with particular concern being
long-range connectivity between the prefrontal and occipital lobes. Based on our results, there
are still some limitations and suggestions. In this study, we did not subdivide the different stages
of aMCI. In the future, researchers could continuously track the transition of connectivity from
aMCI to AD. In addition, rs-FC based on fNIRS can not only determine cortical lesions in MCI,
but also support the evaluation of the effect of targeted therapy, and provide personalized reha-
bilitation training programs for patients.

5 Conclusion

In this study, fNIRS based rs-FC analysis was employed to evaluate changes in functional con-
nectivity in MCI patients. A wide range of diminished functional connections were observed,
especially the long-range ones involving the frontal, parietal, and occipital lobes. These specific
and sensitive connections were considered biomarkers in an attempt to provide some support for
the identification of MCI. Furthermore, the connections between the right dorsolateral prefrontal
cortex and the left occipital lobe are strongly representative, deserving more attention in studies
of MCI. fNIRS-based rs-FC analysis could provide economic and fast screening strategies for
MCI, and it is also expected to play a unique role in the evaluation of the effect of targeted
therapy in the future.
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