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1 Introduction
Optical interferometry continues to be a major tool for
determining the quality of the wavefront produced by an
optical component.1,2 The main advantages of diagnostic
tests based on optical interferometry are their high precision
and accuracy.3

A two-wave interferometer generates an interferogram by
superimposing two wavefronts, one of which is, in general,
either a plane or a spherical wavefront, while the other cor-
responds to an unknown wavefront whose shape is to be
measured.1,2,4 Hence, the difference between these wave-
fronts is defined as either optical path difference (OPD) or
wavefront aberration.5

The problem of computing the wavefront aberration from
an interferogram in terms of Zernike polynomials has been
addressed by using the classical Gram-Schmidt method and
the least-squares method.6 While accurate modeling of the
wavefront aberration with Zernike polynomials involves
selecting the order of the polynomial expansion based on
a list of the digitized fringe centers with their assigned
order numbers,7–10 this work describes a hybrid evolutionary
optimization algorithm (HEOA) which automatically per-
forms an accurate reconstruction of the wavefront aberration
from a real interferogram once an objective function that
depends on the Euclidean distance between the synthetic
interferogram optimized in terms of the computed Zernike
polynomials expansion coefficients and the analyzed real
interferogram has been minimized while avoiding a local
minimum. To prevent premature convergence to a local mini-
mum, the proposed HEOA incorporates the advantages of

both a multimember evolution strategy (MMES) and locally
weighted linear regression (LWLR).

The MMES belongs to a class of optimization techniques
called evolutionary algorithms, which are inspired by the
principles of biological evolution. With an MMES, the opti-
mization starts with a set of individuals, where each individ-
ual represents a real-valued vector that represents a candidate
solution to the problem at hand. The starting population in
the MMES evolves toward successively better regions of
the search space by means of randomized processes (evolu-
tionary operators), such as recombination, mutation, and
selection, until a goal value in the objective function is
attained.11–13 However, in some practical cases, an MMES
might stagnate in the local minimum due to the lack of theo-
retical convergence proof to the near-optimal solution; this
phenomenon is sometimes called premature convergence.
Recently,14,15 efforts have been made to address this short-
coming with the aid of the HEOAs.

Therefore, in this hybrid configuration, each resulting
individual with the MMES is not included in the next gen-
eration directly but used as a seed for the subsequent local
search technique (LWLR). The LWLR algorithm searches
the neighborhood of each resulting individual and selects
a better point to be included in the next generation. Hence,
the individuals predicted with the LWLR maintain the
necessary diversity to prevent quick convergence to a local
minimum, and reliable locating of the near-optimal solution
is performed by the use of the evolutionary operators such as
those described previously.16–18

The numerical results show that the proposed HEOA is
robust in real experiments for analyzing interferograms
degraded by noise.

The outline of this work is organized as follows. In Sec. 2,
we describe the HEOA (MMES-LWLR) in detail. Section 3
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provides the numerical results and discussions on the solu-
tion of the problem for reconstructing the wavefront aberra-
tion from a Fizeau interferogram. The conclusions of the
paper are summarized in Sec. 4.

2 Proposed Hybrid Evolutionary Optimization
Algorithm

The irradiance in the interferogram plane due to the super-
imposition of two wavefronts is given by Ref. 4.

Fig. 1 Flow chart of the hybrid evolutionary optimization algorithm (HEOA).
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EQ-TARGET;temp:intralink-;e001;63;734Iðx; yÞ ¼ 2I0

�
1þ cos

�
2π

λ

�
wðx; yÞ

�
þ nðx; yÞ; (1)

where I0 specifies that the twowaves have equal and uniform
intensity, λ is the wavelength of the light, wðx; yÞ is the
unknown wavefront aberration, and nðx; yÞ represents addi-
tive and/or multiplicative noise. Considering that the Zernike
polynomials are made up of modes that are of the same form
as the types of aberrations observed in optical tests, it is con-
venient to express the wavefront aberration in polynomial
form.5

For computing the wavefront aberration from Eq. (1), the
inverse problem is reformulated as an optimization problem.
Hence, the proposed HEOA minimizes the following objec-
tive function based on the Euclidean distance between two
interferograms:

EQ-TARGET;temp:intralink-;e002;63;556EDðIK; IEQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xn
j¼1

ðIKi;j − IEQi;jÞ2
vuut ; (2)

where IEQ corresponds to the real interferogram whose inten-
sity histogram has been equalized, while IK corresponds to
the synthetic interferogram optimized in terms of the best
individual found y 00

kðbestÞ, k ¼ 1; : : : ; μ, in the i’th iteration
or generation. Furthermore, μ represents the number of indi-
viduals, which is constant for all generations.

Each individual y 00
k in the i’th generation is formed by

a real-valued vector that contains elements called object var-
iables x 00

k;p, and each variable is related to a standard deviation,
called the strategy parameter σ 00

k;p, for carrying on the muta-
tion. Hence, an individual is expressed as follows:11–13

EQ-TARGET;temp:intralink-;e003;63;378y 00
k ¼ ðx 00

k;p; σ
00
k;pÞ; p ¼ 1; : : : ; 35: (3)

In Eq. (3), each object variable represents the p’th
Zernike polynomials expansion coefficient. This work con-
siders the list of 35 Zernike polynomials described by Wyant
et al., where the modes # 1 through # 35 represent the aber-
rations to the ninth order.5 Thus, an individual represents
the wavefront aberration necessary to simulate an interfero-
gram Ik.

Since IK , based on its corresponding y 00
k , is simulated con-

sidering the pixel values stored in the full range from 0
through 255, the intensity histogram for the experimental
interferogram deformed by noise and spatial variations in
background/contrast illumination components should be
equalized to also cover the full range in order to calculate
the Euclidean distance between the two interferograms.19

The proposed HEOA takes as an input an equalized
experimental interferogram and gives as output the vector
of aberration coefficients that best matches it. To do this,
the HEOA minimizes Eq. (2) such that y 00

kðbestÞ satisfies its
goal at an acceptable level without being dominated by a
local optimum. The flow chart in Fig. 1 describes the pro-
cedure followed by our HEOA.

The first step of the HEOA is to create an initial popula-
tion of parents yk, k ¼ 1; : : : ; μ, by random selection from a
feasible range in each dimension. The distribution of initial
trials is typically uniform. Next, the evolutionary operators,
such as recombination and mutation, are applied to the set of
parents to create a population of offspring y 0

k, k ¼ 1; : : : ; μ.

The recombination operator allows information from dif-
ferent individuals of the initial population to be combined,
while mutation generates random changes to the rest of
the parents.

While the standard configuration in an MMES considers
only one recombination operator followed by a mutation
operator, in this work the proposed HEOA uses two recom-
bination operators, a local intermediary recombination (LIR)
and a discrete recombination (DR), that work as a whole.
Hence, the LIR is applied to produce 10% of the offspring
first. Next, the DR is applied to produce another 20% of the
offspring. Finally, mutation, the main operator, is applied to
create the remaining 70% of the offspring.

In the first recombination operator (LIR) described by the
HEOA flow chart (again, see Fig. 1), the value of any object
variable and strategy parameter in the offspring receives a
contribution from a randomly chosen subset of the parents,
while in the second recombination operator (DR), the value
of each object variable and strategy parameter in an offspring
vector comes from one of its parents with equal probability.
Also, as can be observed in the HEOA flow chart, the muta-
tion operator generates random changes by adding to each
object variable selected xk;p a random variable taken from
a normal distribution with mean equal to zero and deviation
standard equal to σk;p.

The corresponding strategy parameters are mutated by
performing the component-wise operation described in Fig. 1,
where Nð0; 1Þ represents a normally distributed random var-
iable having an expectation of zero and a standard deviation
of one, while Nk;pð0; 1Þ indicates a random vector, which is
sampled again every time the index k changes.

At this point, it is important to remark that the recombi-
nation and mutation configuration described earlier in terms
of order and the percentage of the initial population they are
applied to is the combination in the proposed HEOA that
can provide the convergence to the near-optimal solution.

Fig. 2 Behavior described by the multimember evolution strategy
(MMES) and the HEOA during the minimization of the objective func-
tion specified in Eq. (2).
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After the children are obtained, the selection operator
chooses the best μ as the parents from the resulting 2μ
individuals.

By means of Eq. (2), the fitness value of each individual
inside 2μ is calculated. Thus, by ranking the fitness values
(errors) yk and y 0

k, k ¼ 1; : : : ; μ, the μ vectors that possess
the least error become the new parents.

After selection, a population of new parents is formed, y 00
k ,

k ¼ 1; : : : ; μ; then the strategy parameters σnewk;p
of each

new parent created from the mutation operator are updated
by means of a deterministic adjustment, called the
1/5-success rule, which says that if the estimated probability
of successful mutation is >1∕5, σnewk;p

is increased; other-
wise, it is decreased, that is, 11–13

EQ-TARGET;temp:intralink-;sec2;326;734If½fitnessðy 00
mutatedk

Þ > fitnessðyselectedkÞ� > 1∕5

EQ-TARGET;temp:intralink-;sec2;326;712σupdatedk;p ¼ σnewk;p
� ð1þ dÞ; p ¼ 1; : : : : : : ; 35:

Else

EQ-TARGET;temp:intralink-;sec2;326;673σupdatedk;p ¼ σnewk;p
∕d; p ¼ 1; : : : : : : ; 35;

where d is a small positive constant. For all numerical experi-
ments, we used d ¼ 0.001. Furthermore, yselectedk represents
the corresponding randomly selected individual from the
initial population to be mutated.

Each parent of the resulting population y 000
k , k ¼ 1; : : : ; μ,

is not directly entered into the next generation but is used

Fig. 3 Interferogram analyzed by the MMES and the synthetic interferograms generated by the best
individuals in some generations during the optimization process described in Fig. 2.
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as the initial starting point for the subsequent local search
technique (LWLR). Hence, each resulting parent y 000

k is
used by the LWLR to create a local linear model for predict-
ing another set of individuals,20,21 yIVk , k ¼ 1; : : : ; μ, only in
a region around the query point (IEQ). Thus, the LWLR
algorithm selects a better point in the neighborhood of
each resulting parent and generates the next generation, as
can be seen in Fig. 1.

The LWLR algorithm starts by assigning a weight wk
for each individual of the resulting population, y 000

k , k ¼
1; : : : ; μ. The weight is calculated by the inverse of the
Euclidean distance from IK , given by the corresponding indi-
vidual y 000

k , to the real interferogram IEQ. Consequently, a
diagonal matrix W is created considering diagonal elements
Wk;k ¼ wk and zeros elsewhere.

Let X be a matrix whose rows are the vectors of synthetic
interferograms generated in terms of the resulting population
y 000
k , k ¼ 1; : : : ; μ, with the addition of a “1” in the last col-
umn. Let Y be a matrix whose rows are the vectors of the
resulting population y 000

k , k ¼ 1; : : : ; μ. Then the data in
X and Y are weighted by means of the following equations:

EQ-TARGET;temp:intralink-;e004;326;668Z ¼ WX; (4)

EQ-TARGET;temp:intralink-;e005;326;638V ¼ WY: (5)

Then a set of individuals yIVk , k ¼ 1; : : : ; μ, can be predicted
as follows:

EQ-TARGET;temp:intralink-;e006;326;590yIVk ¼ ITEQðZTZÞ−1ZTV: (6)

Fig. 4 Interferogram analyzed by the HEOA and the synthetic interferograms generated by the best
individuals in different generations during the minimization process shown in Fig. 2.
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Table 1 Zernike polynomials expansion coefficients computed by the hybrid evolutionary optimization algorithm (HEOA) in the first part of the
numerical study performed.

Mode
Coefficient expressed as multiple of
the wavelength used (λ ¼ 632.8 nm) Zernike polynomial Meaning

0 0.4022λ 1 Piston

1 0.1728λ ρ cos θ Tilt x

2 −3.1416λ ρ sin θ Tilt y

3 0.7663λ 2ρ2 − 1 Focus

4 −0.0411λ ρ2 cos 2θ Astigmatism x

5 −0.0540λ ρ2 sin 2θ Astigmatism y

6 0.2070λ ð3ρ2 − 2Þρ cos θ Coma x

7 0.0578λ ð3ρ2 − 2Þρ sin θ Coma y

8 −0.7825λ 6ρ4 − 6ρ2 þ 1 Primary spherical

9 −0.0478λ ρ3 cos 3θ Trefoil x

10 0.0062λ ρ3 sin 3θ Trefoil y

11 0.0214λ ð4ρ2 − 3Þρ2 cos 2θ Secondary astigmatism x

12 −0.0195λ ð4ρ2 − 3Þρ2 sin 2θ Secondary astigmatism y

13 −0.1218λ ð10ρ4 − 12ρ2 þ 3Þρ cos θ Secondary coma x

14 0.0132λ ð10ρ4 − 12ρ2 þ 3Þρ sin θ Secondary coma y

15 0.1677λ 20ρ6 − 30ρ4 þ 12ρ2 − 1 Secondary spherical

16 0.0000λ ρ4 cos 4θ Tetrafoil x

17 0.0001λ ρ4 sin 4θ Tetrafoil y

18 0.0000λ ð5ρ2 − 4Þρ3 cos 3θ Secondary trefoil x

19 −0.0001λ ð5ρ2 − 4Þρ3 sin 3θ Secondary trefoil y

20 0.0000λ ð15ρ4 − 20ρ2 þ 6Þρ2 cos 2θ Tertiary astigmatism x

21 −0.0000λ ð15ρ4 − 20ρ2 þ 6Þρ2 sin 2θ Tertiary astigmatism y

22 0.0000λ ð35ρ6 − 60ρ4 þ 30ρ2 − 4Þρ cos θ Tertiary coma x

23 0.0000λ ð35ρ6 − 60ρ4 þ 30ρ2 − 4Þρ sin θ Tertiary coma y

24 −0.0000λ 70ρ8 − 140ρ6 þ 90ρ4 − 20ρ2 þ 1 Tertiary spherical

25 −0.0000λ ρ5 cos 5θ Pentafoil x

26 0.0000λ ρ5 sin 5θ Pentafoil y

27 0.0001λ ð6ρ2 − 5Þρ4 cos 4θ Secondary tetrafoil x

28 0.0000λ ð6ρ2 − 5Þρ4 sin 4θ Secondary tetrafoil y

29 0.0000λ ð21ρ4 − 30ρ2 þ 10Þρ3 cos 3θ Tertiary trefoil x

30 −0.0000λ ð21ρ4 − 30ρ2 þ 10Þρ3 sin 3θ Tertiary trefoil y

31 −0.0000λ ð56ρ6 − 105ρ4 þ 60ρ2 − 10Þρ2 cos 2θ Quaternary astigmatism x

32 −0.0000λ ð56ρ6 − 105ρ4 þ 60ρ2 − 10Þρ2 sin 2θ Quaternary astigmatism y

33 0.0000λ ð126ρ8 − 280ρ6 þ 210ρ4 þ 60ρ2 þ 5Þρ cos θ Quaternary coma x

34 −0.0000λ ð126ρ8 − 280ρ6 þ 210ρ4 þ 60ρ2 þ 5Þρ sin θ Quaternary coma y

35 −0.0000λ 252ρ10 − 630ρ8 þ 560ρ6 − 210ρ4 þ 30ρ2 − 1 Quaternary spherical
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3 Numerical Results
In the first part of the numerical study conducted, Fig. 2
shows the minimization procedure described by MMES when
the fitness of the best individual in terms of Eq. (2) is plotted
against the generation number (dashed black line).

When the initial population is randomly generated and
each individual is formed by a considerable number of
Zernike polynomials expansion coefficients (35 coefficients
in the present optimization problem), the MMES cannot pre-
vent premature convergence to a local minimum, as can be
observed in Fig. 2. This occurs due to the lack of population
diversity.

It can be seen in Fig. 2 that the local minimum produced
by MMES as the final solution to the optimization problem
is found without any change after about 764 generations.
Consequently, the similarity between the interferogram
retrieved as the final solution and the analyzed Fizeau inter-
ferogram is very poor [see Figs. 3(a) and 3(d), respectively].
In Fig. 3, each synthetic interferogram Ik corresponds to
the best individual of its generation within the optimization
process shown in Fig. 2.

If additional information about the solution of the optimi-
zation problem is available as proportioned by a local search
technique (LWLR), then such information should be consid-
ered as the current population in the next iteration, which
can prevent local optima from being generated within the
MMES. Once such additional information is used by the
MMES, it can be successfully applied to solve Eq. (2), avoid-
ing a premature convergence to a local minimum.

Also shown in Fig. 2 as a solid blue line is the behavior
described by the proposed HEOA in order to minimize
the objective function in Eq. (2) avoiding local minima.
As can be noted, the near-optimal solution is obtained by
the HEOA after 583 generations. Figure 4 shows the Fizeau
interferogram under analysis, which corresponds to the
same interferogram analyzed by MMES, and the interfero-
grams already generated by the fittest individuals in some
generations during the optimization process described by
HEOA.

In Fig. 2, most of the progress given by HEOA occurs
early in the search due to the end of the flat curve in gen-
eration 360, and the synthetic interferogram generated by
the best individual in this generation [see Fig. 4(c)] already
tends to be similar to the Fizeau interferogram, although not
enough compared to the interferogram obtained in the last
generation [Fig. 4(d)], which is practically identical to the
Fizeau interferogram. Sometimes the HEOA describes a
flat curve, as shown in Fig. 2 from generation 164 to 360,
even when the algorithm usually converges to the near-
optimal solution between the 500th and 600th generations.

Considering the near-optimal solution found in the first
part of our numerical study, we assume that the HEOA
shows validity in reconstructing, from the Fizeau interfero-
gram, the wavefront aberration in terms of their Zernike
polynomial coefficients computed to the fifth order once the
objective function that depends on the Euclidean distance
has been minimized while avoiding a local minimum. In
Table 1, it can be observed that the significant contribution
to the wavefront aberration reconstructed by the HEOA is
contained in the first 15 modes, while the contribution of the
remaining modes is not meaningful compared with those of
the first 15 modes.

Figure 5 shows the three-dimensional (3-D) plot of the
wavefront aberration reconstructed from the first Fizeau
interferogram by considering the Zernike polynomial expan-
sion coefficients shown in Table 1. In Fig. 5, the wavefront
aberration is shown by removing the pseudoaberrations,
such as piston, tilt x, tilt y, and focus.

The second part of the numerical study aims to test the
performance of the HEOA in computing, from a second
real interferogram, the Zernike polynomial coefficients to
the third order, discarding the higher-order Zernike polyno-
mial expansion coefficients during the optimization process.
To do this, we have selected a Fizeau interferogram whose
OPD can be expressed in terms of third-order aberrations.

Figure 6 shows the performance of HEOA, a second
Fizeau interferogram to be analyzed, and the synthetic
interferograms generated by the fittest individuals at some
generations during the optimization process. As can be
observed, the similarity between the interferogram retrieved
as the near-optimal solution in generation 513 and the ana-
lyzed real interferogram is very good. This numerical result
makes it clear that the HEOA is also capable of reconstruct-
ing the wavefront aberration from the second Fizeau inter-
ferogram. Thus, the ability of the HEOA to solve Eq. (2)
is similar to that obtained in the first part of the numerical
study. The Zernike polynomial coefficients calculated in
the second part of the numerical study are shown in Table 2.

According to the numerical results shown in Table 2, the
wavefront aberration reconstructed by the HEOA during the
second part of the numerical study is then defined by third-
order aberrations, such as piston, tilt x, tilt y, focus, astigma-
tism x, astigmatism y, coma x, coma y, and primary spherical
aberration, while the remaining Zernike polynomial expan-
sion coefficients tend to be equal to zero.

Fig. 5 Three-dimensional (3-D) plot of the wavefront aberration
reconstructed from the first Fizeau interferogram by the use of HEOA.
The wavefront aberration is shown by removing the pseudo aberra-
tions, such as piston, tilt x , tilt y , and focus.
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Figure 7 shows the 3-D plot of the wavefront aberration
reconstructed from the second Fizeau interferogram by
considering the Zernike polynomial expansion coefficients
shown in Table 2. Also, in Fig. 7, the wavefront aberration
is shown with the pseudoaberrations removed.

It is important to mention that even though both Fizeau
interferograms are equalized, it is evident that the first inter-
ferogram is analyzed containing a broken fringe, as shown in
Fig. 8, while the second real interferogram is analyzed con-
taining a distortion caused by the diffraction of dust particles
in the optical paths, as indicated in Fig. 9. However, the
HEOA has proven to be robust in both numerical studies.

In all of the numerical experiments, we used a personal
computer equipped with a 2.80 GHz Pentium-4 processor
and we chose the software MATLAB™ since it allows a

program to be written in the simplest form. The numerical
experiments performed by the HEOA took about 251 s using
a population size equal to 50. Hence, a program imple-
mented in MATLAB programming language is slow because
the operations must be interpreted before being performed.
However, an efficient code can be generated from a
MATLAB™ program by using a translator. A study related
to this alternative is not intended to form part of this paper.

Finally, it is important to remark that the number of
Zernike modes used by the HEOA for the reconstruction
of the wavefront aberration in the second part of the numeri-
cal study is similar to that obtained with the covariance
matrix method recently proposed by Yu et al., to analyze
the wavefront aberrations for the circle interference fringe
of a fine polished aluminum disk surface captured by a

Fig. 6 Second interferogram analyzed and the synthetic interferograms generated by the fittest individ-
uals in different generations within the optimization process performed by HEOA. The near-optimal
solution is obtained after 512 generations.
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Twyman-Green interferometer system.9 In that work, 35-
mode Zernike coefficients are provided to express the wave-
front aberrations and an experimental interpretation of the
Zernike coefficients’ stability is given. Hence, considering
each wavefront aberration reconstructed with the different
Zernike modes from 10 to 35, we noted that the covariance
matrix method maintains not only higher fitting precision,

Table 2 Zernike polynomials expansion coefficients computed by
HEOA in the second part of the numerical study performed.

Mode

Coefficient expressed
as multiple of the
wavelength used
(λ ¼ 632.8 nm) Zernike polynomial

0 1.0324λ 1

1 −1.6467λ ρ cos θ

2 0.0248λ ρ sin θ

3 1.0364λ 2ρ2−1

4 −0.3207λ ρ2 cos2θ

5 −0.0034λ ρ2 sin2θ

6 0.0027λ ð3ρ2−2Þρ cos θ
7 −0.0078λ ð3ρ2−2Þρ sin θ
8 −0.0040λ 6ρ4−6ρ2þ1

9 0.0001λ ρ3 cos3θ

10 0.0000λ ρ3 sin3θ

11 0.0001λ ð4ρ2−3Þρ2 cos2θ
12 0.0000λ ð4ρ2−3Þρ2 sin2θ
13 0.0000λ ð10ρ4−12ρ2þ3Þρ cos θ
14 −0.0000λ ð10ρ4−12ρ2þ3Þρ sin θ
15 0.0000λ 20ρ6−30ρ4þ12ρ2−1

16 0.0000λ ρ4 cos4θ

17 0.0000λ ρ4 sin4θ

18 0.0000λ ð5ρ2−4Þρ3 cos3θ
19 0.0000λ ð5ρ2−4Þρ3 sin3θ
20 0.0000λ ð15ρ4−20ρ2þ6Þρ2 cos2θ
21 0.0000λ ð15ρ4−20ρ2þ6Þρ2 sin 2θ
22 0.0000λ ð35ρ6−60ρ4þ30ρ2−4Þρ cos θ
23 0.0000λ ð35ρ6−60ρ4þ30ρ2−4Þρ sin θ
24 −0.0000λ 70ρ8−140ρ6þ90ρ4−20ρ2þ1

25 −0.0000λ ρ5 cos5θ

26 0.0000λ ρ5 sin5θ

27 −0.0000λ ð6ρ2−5Þρ4 cos4θ
28 0.0000λ ð6ρ2−5Þρ4 sin4θ
29 0.0000λ ð21ρ4−30ρ2þ10Þρ3 cos3θ
30 0.0000λ ð21ρ4−30ρ2þ10Þρ3 sin3θ
31 0.0000λ ð56ρ6−105ρ4þ60ρ2−10Þρ2 cos2θ
32 0.0000λ ð56ρ6−105ρ4þ60ρ2−10Þρ2 sin 2θ
33 0.0000λ ð126ρ8−280ρ6þ210ρ4þ60ρ2þ5Þρ cos θ
34 0.0000λ ð126ρ8−280ρ6þ210ρ4þ60ρ2þ5Þρ sin θ
35 0.0000λ 252ρ10−630ρ8þ560ρ6−210ρ4þ30ρ2−1

Fig. 7 3-D plot of the wavefront aberration reconstructed from the
second Fizeau interferogram by the use of HEOA. The wavefront
aberration is shown by removing the pseudoaberrations, such as
piston, tilt x , tilt y , and focus.

Fig. 8 First interferogram analyzed. The arrow indicates a broken
fringe.

Fig. 9 Second interferogram analyzed. The arrows indicate a distor-
tion caused by the diffraction of dust particles in the optical paths.
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but also the correct expression for the wavefront aberration
when the number of Zernike modes is 10.

4 Conclusions
This paper has presented a study of the performance of
HEOA based on the combination of MMES and LWLR
for reconstructing the wavefront aberration from a real inter-
ferogram by the use of Zernike polynomials.

The numerical results proved that HEOA has the ability
not only to calculate the correct values of the Zernike poly-
nomial expansion coefficients, but also to find the correct
number of Zernike modes even when each Fizeau interfero-
gram is degraded by noise (see Figs. 8 and 9).

It is important to note that the pseudoaberration search
space in HEOA is restricted in each numerical trial to pre-
serve the numerical stability. Thus, the reconstruction of the
wavefront aberrations is carried out by considering a reduced
number of fringes. However, the proposed algorithm could
be applied to corroborate with precision the quality of a
manufactured optical surface once the tilt and defocusing
have been reduced in the Fizeau interferometer system.
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