Open Access
2 June 2020 Frequency-domain diagonal extension imaging
Shan Jiang, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, Kebin Shi, Fan Bai, Shu Wang, Peng Xi
Author Affiliations +
Abstract

The pixel size of a charge-coupled device (CCD) camera plays a major role in the image resolution, and the square pixels are attributed to the physical anisotropy of the sampling frequency. We synthesize the high sampling frequency directions from multiple frames acquired with different angles to enhance the resolution by 1.4  ×   over conventional CCD orthogonal sampling. To directly demonstrate the improvement of frequency-domain diagonal extension (FDDE) microscopy, lens-free microscopy is used, as its resolution is dominantly determined by the pixel size. We demonstrate the resolution enhancement with a mouse skin histological specimen and a clinical blood smear sample. Further, FDDE is extended to lens-based photography with an ISO 12233 resolution target. This method paves a new way for enhancing the image resolution for a variety of imaging techniques in which the resolution is primarily limited by the sampling pixel size, for example, microscopy, photography, and spectroscopy.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Shan Jiang, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, Kebin Shi, Fan Bai, Shu Wang, and Peng Xi "Frequency-domain diagonal extension imaging," Advanced Photonics 2(3), 036005 (2 June 2020). https://doi.org/10.1117/1.AP.2.3.036005
Received: 30 January 2020; Accepted: 14 May 2020; Published: 2 June 2020
Lens.org Logo
CITATIONS
Cited by 15 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Image resolution

Resolution enhancement technologies

Microscopy

Image sensors

Blood

Digital imaging

Optical transfer functions

Back to Top