Land surface temperature (LST) is a crucial parameter for global climate change studies. LST changes are also directly associated with the large-scale changes in land cover. Previous studies carried out a comparative analysis of satellite-derived LST response between periods before and after homogenous land cover changes. We present an alternative approach that quantifies long-term LST variability in response to various land use/land cover change (LULCC) patterns over Phuket Island, Thailand, from 2003 to 2017. First, four Moderate Resolution Imaging Spectroradiometer (MODIS) overpass times of LST time series were adjusted for seasonal effects using a cubic spline function to preserve the number of original data and enable estimates of LST dynamics and trends using the generalized least squared models. Second, LULCC patterns were classified according to land cover type conversion and spatial pattern transformations between the years 2000 and 2016. Spatial homogeneity and heterogeneity were quantified by the coverage percentage for each land use and land cover (LULC) type within a given location. Finally, the influence of LULCC patterns on the long-term spatiotemporal behavior of LST was assessed using the generalized estimating equation model. Results showed that different land cover transitions influence the dynamics of daytime LST but not the nighttime LST. The proportion of different land cover types within an LST pixel and transition amounts contributed to the quantity of increasing surface temperature, especially over impervious surface types. Diverse LULCC patterns with considerations of spatial heterogeneity improved our insight about a relatively strong effect of combined LULC types on LST responses. The climatic effect through the gradual conversion of heterogeneous land cover is necessary to be considered in climate research studies. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 8 scholarly publications.
MODIS
Agriculture
Statistical analysis
Climate change
Temperature metrology
Data modeling
Climatology