9 April 2013 Predicting leaf area index in wheat using an improved empirical model
Hanyue Chen, Zheng Niu, Wenjiang Huang, Jilu Feng
Author Affiliations +
Funded by: Major State Basic Research Development Program of China, National Natural Science Foundation of China
Abstract
Leaf area index (LAI) is typically estimated from remote sensing data acquired at nadir position. Known issues of this mono-angle approach include a saturation limit at intermediate values of LAI and inadequacy to represent any structural characteristics of vegetation. In this study, we present an improved LAI estimation model that incorporates multiangle reflectance data exploring the feasibility of addressing these issues, especially for LAI estimation in winter wheat. The improved model takes advantage of angular information in the normalized difference between hotspot and darkspot for improving LAI estimation by better accounting for foliage clumping. Four vegetation indices were also considered for LAI estimation, including three versions of the normalized difference vegetation index (NDVI) and the normalized hotspot-signature vegetation index (NHVI). A geometric-optical canopy model named Five-Scale was used to simulate a range of bidirectional reflectance for sensitivity analysis. The results indicated that better accuracy in LAI prediction was observed from our improved model than from NHVI or any NDVI. A validation with in situ measurements of LAI and bidirectional reflectance in the growth cycle of wheat indicated that the improved model provided the best correlation (R 2 =0.93 ) among all models, followed by the NHVI.
© 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2013/$25.00 © 2013 SPIE
Hanyue Chen, Zheng Niu, Wenjiang Huang, and Jilu Feng "Predicting leaf area index in wheat using an improved empirical model," Journal of Applied Remote Sensing 7(1), 073577 (9 April 2013). https://doi.org/10.1117/1.JRS.7.073577
Published: 9 April 2013
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Reflectivity

Data modeling

Vegetation

Bidirectional reflectance transmission function

Near infrared

In situ metrology

Remote sensing

Back to Top