Light-field images captured by light-field cameras usually suffer from low spatial resolution due to the inherent limited sensor resolution. Light-field spatial super-resolution thus becomes increasingly desirable for subsequent applications. Although continuous progress has been achieved, the existing methods still failed to thoroughly explore the coherence among light-field views. To address this issue, we propose an efficient neural network for light-field spatial super-resolution, in which the spatial and angular information can be fully exploited by repeatedly alternating spatial and angular domain. Specifically, an enhanced spatial-angular separable convolution block is proposed to efficiently exploit the correlation information between sub-aperture images. Moreover, a multi-scale feature extraction block is introduced to extract feature representations at different scales and capture rich texture and semantic information. Experimental results on both synthetic and real-world light-field datasets demonstrate that the proposed method outperforms other state-of-the-art methods with higher peak signal-to-noise ratio (PSNR)/structural similarity (SSIM) values and fewer parameters. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication.
Super resolution
Convolution
Spatial resolution
Feature extraction
Lawrencium
Cameras
Convolutional neural networks