Human epidermal growth factor receptor 2 (HER2), a transmembrane tyrosine kinase receptor encoded by the ERBB2 gene on chromosome 17q12, is a predictive and prognostic biomarker in invasive breast cancer (BC). Approximately 20% of BC are HER2-positive as a result of ERBB2 gene amplification and overexpression of the HER2 protein. Quantification of HER2 is performed routinely on all invasive BCs, to assist in clinical decision making for prognosis and treatment for HER2-positive BC patients by manually counting gene signals. We propose an automated system to quantify the HER2 gene status from chromogenic in situ hybridization (CISH) whole slide images (WSI) in invasive BC. The proposed method selects untruncated and nonoverlapped singular nuclei from the cancer regions using color unmixing and machine learning techniques. Then, HER2 and chromosome enumeration probe 17 (CEP17) signals are detected based on the RGB intensity and counted per nucleus. Finally, the HER2-to-CEP17 signal ratio is calculated to determine the HER2 amplification status following the ASCO/CAP 2018 guidelines. The proposed method reduced the labor and time for the quantification. In the experiment, the correlation coefficient between the proposed automatic CISH quantification method and pathologist manual enumeration was 0.98. The p-values larger than 0.05 from the one-sided paired t-test ensured that the proposed method yields statistically indifferent results to the reference method. The method was established on WSI scanned by two different scanners. Through the experiments, the capability of the proposed system has been demonstrated. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 14 scholarly publications.
Signal detection
Breast cancer
Polonium
Cancer
RGB color model
Tumors
Feature selection