21 January 2022 Evaluation of motion artifacts in brain magnetic resonance images using convolutional neural network-based prediction of full-reference image quality assessment metrics
Hajime Sagawa, Koji Itagaki, Tatsuhiko Matsushita, Tosiaki Miyati
Author Affiliations +
Abstract

Purpose: Motion artifacts in magnetic resonance (MR) images mostly undergo subjective evaluation, which is poorly reproducible, time consuming, and costly. Recently, full-reference image quality assessment (FR–IQA) metrics, such as structural similarity (SSIM), have been used, but they require a reference image and hence cannot be used to evaluate clinical images. We developed a convolutional neural network (CNN) model to quantify motion artifacts without using reference images.

Approach: The brain MR images were obtained from an open dataset. The motion-corrupted images were generated retrospectively, and the peak signal-to-noise ratio, cross-correlation coefficient, and SSIM were calculated. The CNN was trained using these images and their FR–IQA metrics to predict the FR–IQA metrics without reference images. Receiver operating characteristic (ROC) curves were created for binary classification, with artifact scores   <  4 indicating the need for rescanning. ROC curve analysis was performed on the binary classification of the real motion images.

Results: The predicted FR–IQA metric having the highest correlation with the subjective evaluation was SSIM, which was able to classify images requiring rescanning with a sensitivity of 89.5%, specificity of 78.2%, and area under the ROC curve (AUC) of 0.930. The real motion artifacts were classified with the AUC of 0.928.

Conclusions: Our CNN model predicts FR–IQA metrics with high accuracy, which enables quantitative assessment of motion artifacts in MR images without reference images. It enables classification of images requiring rescanning with a high AUC, which can improve the workflow of MR imaging examinations.

© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) 2329-4302/2022/$28.00 © 2022 SPIE
Hajime Sagawa, Koji Itagaki, Tatsuhiko Matsushita, and Tosiaki Miyati "Evaluation of motion artifacts in brain magnetic resonance images using convolutional neural network-based prediction of full-reference image quality assessment metrics," Journal of Medical Imaging 9(1), 015502 (21 January 2022). https://doi.org/10.1117/1.JMI.9.1.015502
Received: 29 June 2021; Accepted: 3 January 2022; Published: 21 January 2022
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image quality

Magnetic resonance imaging

Brain

Neuroimaging

Current controlled current source

Motion models

Magnetism

Back to Top