Line edge roughness (LER) measurement is one of the metrology challenges for three-dimensional device structures, and LER reference metrology is important for reliable LER measurements. For the purpose of LER reference metrology, we developed an LER measurement technique that can analyze LER distribution along the height of a line pattern, with high resolution and repeatability. A high-resolution atomic force microscopy (AFM) image of a vertical sidewall of a line pattern was obtained using a metrological tilting-AFM, which offers SI-traceable dimensional measurements. The tilting-tip was controlled with an inclined servo axis, and it scans the vertical sidewall along a line pattern with a high sampling density to enable an analysis of the LER height distribution at the sidewall. A horizontal cross-section of the sidewall shows sidewall roughness with sub-nm resolution. Power spectral density (PSD) analysis of the sidewall profile showed that the PSD noise in the high-frequency region was several orders of magnitude lower than the noise of typical scanning electron microscopy methods. AFM measurements were sequentially repeated three times to evaluate the repeatability of the LER measurement; results indicated a high repeatability of 0.07 nm evaluated as a standard deviation of LER at each height. |
CITATIONS
Cited by 7 scholarly publications.
Line edge roughness
Metrology
Atomic force microscopy
Clouds
Scanning electron microscopy
Atomic force microscope
Servomechanisms