1 November 2008 Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes
M. Maksimovic, Manfred Hammer, E. W. C. van Groesen
Author Affiliations +
Abstract
We analyze coupled optical defect cavities realized in finite one-dimensional photonic crystals (PC). Viewing these as open systems, where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies (eigenvalues) and quasi-normal modes (QNM) (eigenfunctions). Single-defect structures (PC atoms) can be viewed as elementary building blocks for multiple-defect structures (PC molecules) with more complex functionality. The QNM description links the resonant behavior of individual PC atoms to the properties of the PC molecules via eigenfrequency splitting. A variational principle for QNMs permits one to predict the eigenfield and the complex eigenvalues in PC molecules, starting with a field template incorporating the relevant QNMs of the PC atoms. Furthermore both the field representation and the resonant spectral transmission close to these resonances are obtained from a variational formulation of the transmittance problem using a template with the most relevant QNMs. The method applies to both symmetric and nonsymmetric single and multiple-cavity structures with weak or strong coupling between the defects.
©(2008) Society of Photo-Optical Instrumentation Engineers (SPIE)
M. Maksimovic, Manfred Hammer, and E. W. C. van Groesen "Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes," Optical Engineering 47(11), 114601 (1 November 2008). https://doi.org/10.1117/1.3028335
Published: 1 November 2008
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Composites

Molecules

Refractive index

Chemical species

Principal component analysis

Photonic crystals

Transmittance

Back to Top