Experimental demonstration of a quantum random number generator based on one single-photon avalanche diode (SPAD) detector, a T / ( T − t ) pulse-shaped laser, and an field-programmable gate array (FPGA) acquisition module is presented. An integrated laser driver drives an external laser diode at 670 nm wavelength, whereas the SPAD with a photon detection probability of 18.5% is integrated together with an active quenching-resetting circuit. The SPAD detector generates counts for the interarrival time (IAT) measurement system implemented in an FPGA, where the change of the IATs between consecutive pulses is used to derive a random bit stream. It is shown how the application of a pulse-shaped laser driver can increase the performance of the system as compared to the continuous-wave operation of the laser diode to achieve the maximum generation rate of 5 Mbps while using a single SPAD. The generated numbers pass all randomness tests of the National Institute of Standards and Technology (NIST), Dieharder, and ENT test (pseudorandom number sequence test) suits. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 2 scholarly publications.
Sensors
Field programmable gate arrays
Continuous wave operation
Semiconductor lasers
Time correlated photon counting
Avalanche photodiodes
Optical engineering