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Abstract

Breast cancer is the most common malignancy in women. Unfortunately, even though screening programs have helped
to increase survival rates, the number of false positives and false negatives remains high. phase-contrast X-ray CT is
a promising imaging technique which could improve breast cancer diagnosis by combining the high three-dimensional
resolution of conventional CT with higher soft-tissue contrast. Grating Interferometry CT (GI-CT) arguably has the highest
chance to make the transition to clinical practice. Unfortunately though, obtaining high-quality images is challenging.
Grating fabrication defects and photon starvation lead to high noise amplitudes in the measured data. Moreover, the highly
ill-conditioned differential nature of the GI-CT forward operator renders the inversion from corrupted data even more
cumbersome. In this article we report on a novel regularized iterative reconstruction algorithm with a powerful data-driven
regularization strategy to tackle this challenging inverse problem. In particular, we present an algorithm that combines
the L-BFGS optimization scheme with a Plug-and-Play denoiser parameterized by a deep neural network and empirically
show that the proposed method achieves high quality images, both on simulated data as well as on real measurements.
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I. INTRODUCTION

MALIGNANCIES of the breast still represent the most prevalent cancer in women [1]. Unfortunately, none of the
currently used breast imaging techniques (mammography, breast ultrasound, breast MRI and absorption-based

breast CT and tomosynthesis [2], [3]) is able to provide fully three-dimensional images with sufficiently high isotropic
resolution and soft-tissue contrast necessary to identify critical breast cancer imaging biomarkers [4]. Therefore, better
imaging modalities are needed to improve early detection and increase survival rates. X-ray phase-contrast CT could
potentially offer a solution by combining the high three-dimensional resolution, which comes with CT, with superior
soft-tissue contrast.

When X-ray waves interact with matter, their amplitude and phase are modified according to the refractive index of
the material they interact with. The refractive index of a material is given by n = 1− δ + iβ. The real part δ dictates
the change in the beam’s phase Φ as

Φ =

∫
δ(x, y, z)dz. (1)
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From this, the refraction angle α can be computed using

α =
λ

2π

∂Φ

∂x
. (2)

The imaginary part β is directly linked to the attenuation coefficient via µ = 4πβ/λ, which can then be used to compute
the beam’s attenuation by using the Beer-Lambert law.

It is widely known that soft tissues are characterized by similar β’s [5], which makes it difficult to distinguish different
tissue types in conventional absorption-based CT. Conversely, larger differences in δ’s [5] can theoretically yield higher
soft tissue contrast in reconstructed phase-contrast CT volumes.

The X-ray’s phase must be computed indirectly and many approaches to achieve this have been proposed over the
years. Grating interferometry [6], [7], [8] arguably has the highest chance of making the transition to clinical practice.
In fact, it has non-restrictive requirements in terms of temporal and spatial coherence of the X-ray beam, it can be
operated at large fields-of-view (FOV) and it has a comparably high mechanical robustness [6].

Grating interferometry detects the X-ray’s refraction angle α by exploiting a peculiar interference pattern called
Talbot carpet [9]. When an X-ray beam is refracted, this results in a lateral shift in the interference pattern. Therefore,
by measuring this shift, the wavefront’s change in phase can be easily obtained by integrating (2). To obtain this Talbot
carpet, three gratings are positioned between the source and the detector [7]. The first grating (source grating or G0)
is composed of a highly absorbing material such as gold and is placed immediately in front of the X-ray tube to
improve beam coherence. The second grating (phase grating or G1), which is not designed to absorb photons, imposes
a significant phase-shift to the X-ray beam and creates the interference pattern. To measure the lateral shift of this
interference pattern induced by the sample, which is in the µm range, a highly resolving detector would be required.
Unfortunately, to date no such detectors exist. Therefore, to circumvent this problem, a highly absorbing third grating
(analyzer grating or G2) is placed in front of the detector. By moving one of the gratings with respect to the others
in x-direction, it is then possible to obtain an interferogram called phase stepping curve [10], from which it is in turn
possible to compute the lateral shift of the interference pattern.

The interferogram is modeled as

Ik = I0T · [1 + V0D · cos(k +Φ0 − φ)] (3)

where I0, V0, and Φ0 are the flat-field intensity, visibility and phase maps, respectively, and k is the k-th phase step.
The transmission T , the dark-field D and the differential phase sinograms are given by:

T = exp

[
−
∫

µ(x, y, z)dz

]
, (4)

D = exp

[
−
∫

ϵ(x, y, z)dz

]
, (5)

φ =
λd2
g2

∂

∂x

∫
δ(x, y, z)dz (6)

with λ being the wavelength, g2 the pitch of the G2 grating and d2 the distance between the origin and G2.
The interference pattern’s shift φ, which is directly linked to the beam’s refraction and thus phase, can then be

retrieved with Fourier analysis. The same holds for the absorption signal, which is related to the average intensity of
the curve, and for the dark-field signal, which is related to the curve’s amplitude. In this work though we will focus
exclusively on phase. When combined with a CT acquisition protocol, grating interferometry (GI) naturally extends to
GI-CT.

In an attempt to bring GI-CT to clinical practice, our group has embarked in a long term effort to build a first-of-
its-kind Grating Interferometry Breast CT (GI-BCT) prototype. As such, deposited radiation dose, scanning times and
patient comfort must be compatible with clinical standards.

With these constraints in place, high quality images with grating interferometry CT represent a challenging objective.
In fact, to date, the successful use of grating interferometry phase-contrast CT has been limited to synchrotron beamlines
[11] and laboratory setups [12] where high image quality is achieved by a high X-ray flux or by long scanning times.
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There are two main reasons why it is so challenging to obtain high-quality images with GI-CT. First, an intrinsic
noise amplification takes place during signal retrieval [13]. Second, the differential nature of the phase-contrast forward
operator causes the inverse problem to be more ill-conditioned as compared to conventional CT.

The main figure of merit which determines the quality of a grating interferometer is its visibility, i.e. the amplitude
of the interference pattern in a flat-field scan. The higher the visibility, the more precisely one can compute the
interference pattern’s lateral shift and, consequently, the X-ray beam’s refraction. Visibilities of 30% have been reported
for polychromatic 46keV setups [14]. Unfortunately, high visibilities are challenging to achieve for systems which are
shorter and/or have higher sensitivity, which requires the grating structures to be smaller.

Given the highly noisy sinogram data, it is important to reconstruct the tomograms with a stable inversion algorithm.
A pseudo-inverse such as the filtered backprojection (FBP) algorithm could be applied in conjunction with the Hilbert
filter [15] to solve this task. However, it is widely accepted in the CT community that iterative reconstruction algorithms
are better suited to deal with highly ill-conditioned problems.

Typically, in iterative reconstruction, we need to define a variational loss function comprising a data-fidelity term
and a regularization functional which incorporates prior knowledge about the expected reconstruction. Minimization of
this loss with an optimizer of choice then allows to reconstruct an image which is simultaneously consistent with the
measurements as well as with the prior knowledge.

The most widely used prior in image reconstruction is the total variation (TV) prior [16], which promotes homogeneous
regions separated by sharp edges in the solution by assuming piece-wise constant signals. While TV is still considered
to be a powerful baseline algorithm to regularize ill-conditioned inverse problems, recent years have witnessed the rise
of data-driven algorithms which outperform traditional methods and thus constitute the current state-of-the-art in the
field.

Two main data-driven approaches that draw inspiration from classical variational optimization schemes have been
proposed in the literature. The first approach comprises end-to-end methods which unroll iterative schemes, thereby
transforming each iteration of the iterative reconstruction algorithm into a distinct layer of a neural network [17], [18].
Since the imaging physics is embedded into the network, these models are generally believed to be more robust to noise
and adversarial perturbations compared to pure black-box neural networks. In the second approach, the idea is to learn
the regularizer a-priori on a representative training set, and to then use the trained regularizer in conjunction with the
data-fidelity term in a classical variational optimization framework [19], [20], [21], [22], [23].

The first type of approach tends to yield superior results and deliver faster reconstructions [18]. However, it has the
important disadvantage that no convergence guarantees can be derived and that it needs explicit supervision. Algorithms
in the second category tend to be slower and potentially yield slightly inferior results. However, they have several
advantages. The algorithms can be trained independently of the forward operator, they are more data-efficient (and
possibly unsupervised), and they are amenable to stability and convergence analysis [21]. Since it is of utmost importance
in the medical field to reliably reconstruct the tomograms, we propose a novel algorithm that fits into the second category.

Many different ideas have been proposed to learn a regularizer in a data-driven manner. Some notable ones are
adversarial regularization [20] and its convex counterpart [21], score matching networks [24], regularization by denoising
(RED) [19], network Tikhonov (NETT) [25] and data-driven Plug-and-Play denoisers [22], [23].

To address some of the challenges in GI-BCT and to be able to reconstruct phase-contrast tomograms from highly
corrupted measurement data, we propose an iterative reconstruction algorithm which leverages the power of deep
learning to regularize the highly ill-conditioned tomographic inversion problem. In particular, we propose an algorithm
that alternates between data updates governed by the L-BFGS algorithm [26] and regularization steps performed with
a denoising deep neural network in a Plug-and-Play fashion [27]. We apply the proposed approach to both simulated
data and real measurements and show that it achieves excellent results.

II. METHODS

The optimization problem we aim to solve is

argminδ
1

2
∥Aδ − φ∥22 (7)

where δ is the image containing the real part of the index of refraction, φ is the retrieved differential phase-contrast
sinogram, and A is a linear forward operator modeling equation (6).

Unfortunately, (7) is a highly ill-conditioned problem. Since an unregularized optimization of (7) will converge to a
highly unstable solution, a powerful regularization strategy is necessary to stabilize the reconstruction.
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As mentioned in the introduction, data-driven regularizers have emerged as the new state-of-the-art in the field
and now routinely outperform classical regularization strategies such as total variation (TV) [16]. Among the many
proposed strategies, we found data-driven Plug-and-Play regularizers to work best. Therefore, we here propose to learn
a regularization network which is able to remove both noise and artefacts from the image iterates as they converge to
the final reconstruction.

Given corrupted and clean images, we wish to train a network fθ which maps the corrupted image δ to its clean
counterpart δ∗. The objective function to achieve this is

L =
1

n

n∑
i=1

∥fθ(δi)− δ∗i ∥
2
2 (8)

where fθ is an deep neural network with sufficient expressive power and {δi, δ∗i } are training data pairs.
We parameterized fθ with a 7 million parameter, bias-free U-net [28]. We removed the biases because it has been

shown that this leads to 1) more interpretable denoising performance, and 2) that biasless networks generalize better
to different noise amplitudes [29]. The higher interpretability comes from the fact that we can regard the denoising
process as being locally linear [29]. Therefore, computing the Jacobian shows how the pixel neighborhood is used for
denoising a particular pixel. The higher robustness is important in our case since 1) the noise encountered during image
reconstruction might slightly differ from iteration to iteration, and 2) it makes it easier to train the network as we do
not have to find the perfect amount of noise to train on.

To solve (7) we use the L-BFGS optimization scheme proposed by [26] and apply a denoising step after every k-th
iteration. The proposed method is summarized in Algorithm 1.

By removing noise and artefacts, the denoising step can be interpreted as a projection of the current image iterate
to the data manifold to which clean reconstructions belong. Iteratively alternating between data-fidelity optimization
and projection to the data manifold thereby allows to get close to the measured data, while staying close to the data
manifold of clean reconstructions.

Algorithm 1: L-BFGS optimization with data-driven Plug-and-Play denoiser

input : i = 0; δ0 = 0; kmax = 20; ϵ = 103;
while 1

2∥Aδk − φ∥22 > ϵ do
k = 0; y = 0; s = 0;
if i > 0 then

δk = δreg;
end
while k < kmax do

Lk = 1
2∥Aδk − φ∥22;

∇δkLk = AT (Aδk − φ);
if k > 0 then

s[k − 1] = δk − δk−1;
y[k − 1] = ∇δkLk −∇δk−1

Lk−1;
end
δk+1 = δk − LBFGS(∇δk , s, y);
k = k + 1;

end
i = i+ 1;
δreg = fθ(δkmax);

end
output: δreg

III. RESULTS

A. Simulated data
To quantitatively assess the performance of our method we applied it to simulated breast phantoms developed in-house.
We simulated 600 projections and added Poisson noise that matched real measurements. The results in Figure 1 show
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Fig. 1. Reconstruction results on simulated breast phantoms. First column: full slice, second column: the part inside the red region enlarged.

Fig. 2. Reconstruction results on mastectomy data. First column: full slice, second column: the part inside the red region enlarged.

that the proposed method achieves excellent results and clearly outperforms analytical reconstruction, both qualitatively
as well as in terms of structural similarity index (SSIM) and mean squared error (MSE).

B. Real data

To demonstrate the effectivenss of our method on real data, we scanned a fixed mastectomy obtained at the University
Hospital Zürich on our GI-BCT prototype. We acquired 600 projections under continuous circular rotation. A total of
10 scans have been averaged to compensate for the low visibility (thus high noise amplitudes) we are currently working
with.

We applied exactly the same algorithm as for the simulated data. Importantly, we used the neural network that has
been trained on simulated data. Figure 2 shows that the proposed method once again achieves excellent results and
clearly outperforms analytical reconstruction. We want to emphasize that the applicability of a denoiser, that was trained
on simulated data, to real-world data, is a crucial advantage of our method since it is very difficult to obtain high-quality
real data in a medical setting.

IV. CONCLUSION

In this article we have proposed a novel iterative reconstruction algorithm with a data-driven denoising prior and have
shown that it is able to produce excellent results. Importantly, the regularizer can be trained on simulated data and
later be applied to real measurements. Ongoing work focuses on the theoretical convergence guarantees of the proposed
algorithm.
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