
Combining Deep Learning and Adaptive Sparse Modeling for
Low-dose CT Reconstruction

Ling Chena, Zhishen Huangb, Yong Longa, and Saiprasad Ravishankarc

aUniversity of Michigan Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong
University, Shanghai 200240, China

bDepartment of Computational Mathematics, Science and Engineering, East Lansing, MI
48824, USA

c Department of Computational Mathematics, Science and Engineering and the Department of
Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA

ABSTRACT

Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple
object priors. Recent application of deep learning methods for image reconstruction provides a successful data-
driven approach to addressing the challenges when reconstructing images with measurement undersampling or
various types of noise. In this work, we propose a hybrid supervised-unsupervised learning framework for X-ray
computed tomography (CT) image reconstruction. The proposed learning formulation leverages both sparsity or
unsupervised learning-based priors and neural network reconstructors to simulate a fixed-point iteration process.
Each proposed trained block consists of a deterministic MBIR solver and a neural network. The information
flows in parallel through these two reconstructors and is then optimally combined, and multiple such blocks are
cascaded to form a reconstruction pipeline. We demonstrate the efficacy of this learned hybrid model for low-
dose CT image reconstruction with limited training data, where we use the NIH AAPM Mayo Clinic Low Dose
CT Grand Challenge dataset for training and testing. In our experiments, we study combinations of supervised
deep network reconstructors and sparse representations-based (unsupervised) learned or analytical priors. Our
results demonstrate the promising performance of the proposed framework compared to recent reconstruction
methods.
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1. INTRODUCTION

X-ray computed tomography (CT) is widely used in industrial and clinical applications. It is highly valuable to
reduce patients’ exposure to X-ray radiation during scans by reducing the dosage. However, this creates challenges
for image reconstruction. The conventional CT image reconstruction methods include analytical methods and
model-based iterative reconstruction (MBIR) methods.1 The performance of analytical methods such as the
filtered back-projection (FBP)2 degrades due to the greater influence of noise in the low X-ray dose setting. MBIR
methods aim to address such performance degradation in the low-dose X-ray computed tomography (LDCT)
setting. MBIR methods often use penalized weighted least squares (PWLS) reconstruction formulations involving
simple priors for the underlying object such as edge-preserving (EP) regularization that assumes the image is
approximately sparse in the gradient domain. More recent dictionary learning-based methods3 provide improved
image reconstruction quality compared to nonadaptive MBIR schemes, but involve expensive computations for
sparse encoding. Recent PWLS methods with regularizers involving learned sparsifying transforms (PWLS-ST4)
or a union of learned transforms (PWLS-ULTRA5) combine both computational efficiency (cheap sparse coding
in transform domain) and the representation power of learned models (transforms).
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Figure 1: Overall structure of the proposed Parallel SUPER framework.

Data-driven (deep) learning approaches have also demonstrated success for LDCT image reconstruction
(see6 for a review). FBPConvNet7 is a convolutional neural network (CNN) scheme that refines the quality
of FBP reconstructed (corrupted) CT images to match target or ground truth images. Another approach
WavResNet8 learns a set of filters that are used in constructing the encoder and decoder of the convolutional
framelet denoiser to refine crude LDCT images. However, deep learning methods often require large training sets
for effective learning and generalization. Methods based on sparsifying transform learning typically require small
training sets and have been shown to generalize reasonably to new data.5 Hence, Ye et al.9 proposed a unified
supervised-unsupervised (referred to here as Serial SUPER) learning framework for LDCT image reconstruction
that combined supervised deep learning and unsupervised transform learning (ULTRA) regularization for robust
reconstruction. The framework alternates between a neural network-based denoising step and optimizing a cost
function with data-fidelity, deep network and learned transform terms.

In this work, we propose an alternative repeated parallel combination of deep network reconstructions and
transform learning-based reconstructions (dubbed Parallel SUPER) for improved LDCT image reconstruction.
We show that the adaptive transform sparsity-based image features complement deep network learned features in
every layer with appropriate weights to provide better reconstructions than either the deep network or transform
learning-based baselines themselves. The proposed parallel SUPER method also outperforms the recent Serial
SUPER scheme in our experiments.

2. PARALLEL SUPER MODEL AND THE ALGORITHM

The proposed parallel SUPER reconstruction model is shown in Fig. 1. Each layer of parallel SUPER is comprised
of a neural network and a PWLS based LDCT solver with sparsity-promoting data-adaptive regularizers. The
images in the pipeline flow in parallel through these two components in a layer and are combined together
(with adapted weight). The framework consists of multiple such parallel SUPER layers to ensure empirical
reconstruction convergence. In this work, we have used the FBPConvNet model in the supervised module and
PWLS-ULTRA as the unsupervised reconstruction module with a pre-learned union of transforms. However,
specific deployed modules in the parallel SUPER framework can be replaced with other parametric models or
MBIR methods.

2.1 Supervised Module

The supervised modules are trained sequentially. We set the loss function during training to be the root-mean-
squared error (RMSE) to enforce alignment between the refined images and ground truth images. In the l-th
parallel SUPER layer, the optimization problem for training the neural network is:

min
θ(l)

N∑
n=1

∥Gθ(l)(x̃(l−1)
n )− x⋆

n∥22, (1)

where Gθ(l)(·) denotes the neural network mapping in the l-th layer with parameters θ(l), x̃
(l−1)
n is the n-th input

image from (l − 1)-th layer, x⋆
n is the corresponding regular-dose (reference) image or the training label. Note

that the neural networks in different layers have different parameters.
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2.2 Unsupervised Module

For the unsupervised module of each layer, we solve the following MBIR problem to reconstruct an image x ∈ RNp

from the corresponding noisy sinogram data y ∈ RNd :

min
x≥0

J(x,y) :=
1

2
∥y −Ax∥2W︸ ︷︷ ︸
:=L(Ax,y)

+βR(x), (2)

where W = diag{wi} ∈ RNd×Nd is a diagonal weighting matrix with the diagonal elements wi being the
estimated inverse variance of yi, A ∈ RNd×Np is the system matrix of the CT scan, L(Ax,y) is the data-fidelity
term, penalty R(x) is a (learning-based) regularizer, and the parameter β > 0 controls the noise and resolution
trade-off.

In this work, we use the PWLS-ULTRA method to reconstruct an image x from noisy sinogram data y
(measurements) with a union of pre-learned transforms {Ωk}Kk=1. The image reconstruction is done through
the following nonconvex optimization problem:

x̂(l)(y) = argmin
x

{
1

2
∥y −Ax∥2W + min

Ck,zj

K∑
k=1

∑
j∈Ck

(
∥ΩkPjx− zj∥22 + γ2∥zj∥0

)}
, (3)

where x̂(l)(y) is the reconstructed image by the unsupervised solver in the l-th layer, the operator Pj ∈ Rl×Np

extracts the j-th patch of l voxels of image x as Pjx, zj is the corresponding sparse encoding of the image patch
under a matched transform, and Ck denotes the indices of patches grouped into the k-th cluster with transform
Ωk. Minimization over Ck indicates the computation of the cluster assignment of each patch. The regularizer R
includes an encoding error term and an ℓ0 sparsity penalty counting the number of non-zero entries with weight
γ2. The sparse encoding and clustering are computed simultaneously. We apply the alternating minimization
method from5 (with inner iterations for updating x) on the above optimization problem. The algorithm also
uses a different (potentially better) initialization in each parallel SUPER layer, which may benefit solving the
involved nonconvex optimization problem.

2.3 Parallel SUPER Model

The main idea of the Parallel SUPER framework is to combine the supervised neural networks and iterative
model-based reconstruction solvers in each layer. Define M(x̃(l−1),y; Γ) as an iterative MBIR solver with initial
solution x̃(l−1), noisy sinogram data y and hyperparameter setting Γ to solve optimization problem (2). In the
l-th layer, the parallel SUPER model is formulated as:

x̃(l) = λ ·Gθ(l)(x̃(l−1)) + (1− λ) · x̂(l)(y) s.t.

{
x̂(l)(y) = M(x̃(l−1),y; Γ),

θ(l) = minθ(l)

∑N
n=1 ∥Gθ(l)(x̃

(l−1)
n )− x⋆

n∥22,
(P0)

where λ is the nonnegative weight parameter for the neural network output in each layer and it is selected and
fixed in all layers. Each parallel super layer can be thought of as a weighted average between a supervised
denoised image and a reconstructed low-dose image from the unsupervised solver. Repeating multiple parallel
SUPER layers simulates a fixed-point iteration to generate an ultimate reconstructed image.

The Parallel SUPER training algorithm based on (P0) is shown in Algorithm 1. The Parallel SUPER
reconstruction algorithm is the same except that it uses the learned network weights in each layer.
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Algorithm 1 Parallel SUPER Training Alogorithm

Input: N pairs of reconstructed low-dose images and corresponding regular-dose reference images {(x̃(0)
n ,x⋆

n)}Nn=1, low-
dose sinograms {yn}, weights Wn, ∀ n, number of parallel SUPER layers L, weight of the supervised module λ,
Output: supervised module parameters {θ(l)}Ll=1.

for l = 0, 1, 2, . . . , L do
(1) Update x̂

(l)
n (yn): using x̃

(l−1)
n as initial image, use the PWLS-ULTRA method with Wn

5 to obtain each

x̂
(l)
n (yn).

(2) Update θ(l): with N paired images {(x̃(l−1)
n ,x∗

n)}Nn=1, train the supervised model by solving problem (1) to
obtain θ(l).
(3) Generate the output of l-th layer x̃

(l)
n : use formula in (P0) to obtain the output x̃

(l)
n ∀ n.

end for

3. EXPERIMENTS

3.1 Experiment Setup

In our experiments, we use the Mayo Clinics dataset established for “the 2016 NIH-AAPM-Mayo Clinic Low
Dose CT Grand Challenge”.10 We choose 520 images from 6 of 10 patients in the dataset, among which 500 slices
are used for training and 20 slices are used for validation. We randomly select 20 images from the remaining 4
patients for testing. We project the regular dose CT images x⋆ to sinograms y by adding Poisson and additive
Gaussian noise to them as follows:

yi = − log
(
I−1
0 max

(
Poisson{I0e−[Ax⋆]i}+N{0, σ2}, ϵ

))
,

where the original number of incident photons per ray is I0 = 104, the Gaussian noise variance is σ2 = 25, and
ϵ11 is a small positive number to avoid negative measurement data when taking the logarithm.

We use the Michigan Image Reconstruction Toolbox to construct fan-beam CT geometry with 736 detec-
tors × 1152 regularly spaced projection views, and a no-scatter mono-energetic source. The width of each
detector column is 1.2858 mm, the source to detector distance is 1085.6 mm, and the source to rotation center
distance is 595 mm. We reconstruct images of size 512× 512 with the pixel size being 0.69 mm × 0.69 mm.

3.2 Parameter Settings

In the parallel SUPER model, we use FBPConvNet as the supervised module and PWLS-ULTRA as the unsu-
pervised module. It takes about 10 hours for training the model for 10 layers in a GTX Titan GPU graphics
processor. We train models for different values of the parameter λ (to then select an optimal value), including
0.1, 0.3, 0.5, 0.7, and 0.9. During the training of the supervised method, we ran 4 epochs (kept small to reduce
overfitting risks) of the stochastic gradient descent (SGD) optimizer for the FBPConvNet module in each paral-
lel SUPER layer. The training hyperparameters of FBPConvNet are set as follows: the learning rate decreases
logarithmically from 0.001 to 0.0001; the batchsize is 1; and the momentum parameter is 0.99. The filters are
initialized in the various networks during training with i.i.d. random Gaussian entries with zero mean and vari-
ance 0.005. For the unsupervised module, we have trained a union of 5 sparsifying transforms using 12 slices of
regular-dose CT images (which are included in the 500 training slices). Then, we use the pre-learned union of
5 sparsifying transforms to reconstruct images with 5 outer iterations and 5 inner iterations of PWLS-ULTRA.
In the training and reconstruction with ULTRA, we set the parameters β = 5 × 103 and γ = 20. PWLS-EP
reconstruction is used as the initialization x̃(0) of the input of network in the first layer.

We compare the proposed parallel SUPER model with the unsupervised method (PWLS-EP), standalone
supervised module (FBPConvNet), standalone unsupervised module (PWLS-ULTRA), and the serial SUPER
model. PWLS-EP is a penalized weighted-least squares reconstruction method with edge-preserving hyperbola
regularization. For the unsupervised method (PWLS-EP), we set the parameters δ = 20 and β = 215 and run
100 iterations to obtain convergent results. In the training of the standalone supervised module (FBPConvNet),
we run 100 epochs of training to sufficiently learn the image features with low overfitting risks. In the standalone
unsupervised module (PWLS-ULTRA), we use the pre-learned union of 5 sparsifying transforms to reconstruct
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images. We set the parameters β = 104 and γ = 25, and run 1000 alternations with 5 inner iterations to
ensure good performance. In the serial SUPER model, we run 4 epochs of training when learning the supervised
modules (FBPConvNet), and we use the pre-learned union of 5 sparsifying transforms and set the parameters
β = 5 × 103, γ = 20 and µ = 5 × 105 to reconstruct images with 20 alternations and 5 inner iterations for the
unsupervised module (PWLS-ULTRA).

3.3 Results
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Figure 2: RMSE (over 20 test slices) comparison with different choices of parameters.
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Figure 3: Reconstruction of slice 50 from patient L067 and reconstruction of slice 150 from patient L310 using
various methods. The display window is [800, 1200] HU.

To compare the performance quantitatively, we compute the RMSE in Hounsfield units (HU) and structural
similarity index measure (SSIM)12 for the reconstructed images. For a reconstructed image x̂, RMSE is defined

as
√∑Np

j=1(x̂j − x⋆
j )

2/Np, where x⋆
j denotes the reference regular-dose image intensity at the j-th pixel location

and Np is the number of pixels.

We train the parallel SUPER framework with different choices of the parameter λ including 0.1, 0.3, 0.5, 0.7
and 0.9 to obtain the best choice. Fig. 2 shows the evolution of RMSE over layers for 20 validation slices with
different λ choices. We can see that we obtain the best RMSE when λ = 0.3.

We have conducted experiments on 20 test slices (slice 20, slice 50, slice 100, slice 150 and slice 200 of
patient L067, L143, L192, L310) of the Mayo Clinic data. Table 1 shows the averaged image quality of 20 test
images with different methods. From Table 1, we observe that Parallel SUPER significantly improves the image
quality compared with the standalone methods. It also achieves 1.8 HU better average RMSE compared with
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Serial SUPER while its SSIM is comparable with Serial SUPER. Fig. 3 shows the reconstructions of L067 (slice
50) and L310 (slice 150) using PWLS-ULTRA, FBPConvNet, serial SUPER (FBPConvNet + PWLS-ULTRA),
and parallel SUPER (FBPConvNet + PWLS-ULTRA), along with the references (ground truth). The Parallel
SUPER scheme achieved the lowest RMSE and the zoom-in areas show that Parallel SUPER can reconstruct
image details better.

Table 1: The mean RMSE and SSIM values for 20 test images with PWLS-EP, PWLS-ULTRA, FBPConvNet,
Serial SUPER, and the proposed Parallel SUPER.

PWLS-EP PWLS-ULTRA FBPConvNet Serial SUPER Parallel SUPER

RMSE 41.4 32.4 29.2 25.0 23.2

SSIM 0.673 0.716 0.688 25.0 23.2

4. CONCLUSIONS

This paper proposes the parallel SUPER framework combining supervised deep learning methods and unsuper-
vised methods for low-dose CT reconstruction. We have experimented on a setting with the supervised model
FBPConvNet and the unsupervised model PWLS-ULTRA. This framework demonstrates better reconstruction
accuracy and faster convergence compared to individual involved modules as well as the recent serial SUPER
framework.
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