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ABSTRACT

A limb-viewing spatial heterodyne interferometer is developed to observe temperature in the mesosphere and
lower thermosphere. This can be used to measure atmospheric waves with small vertical wavelengths. The
instrument measures the Oz atmospheric A-band airglow emission in the near-infrared. The emission is visible
during day- and night-time, allowing for a continuous observation. The image is taken by a 2d detector. The
optical system conserves the 2d spatial temperature information. The spectral information is superimposed
in horizontal detector direction. The usual processing thus uses the horizontal detector dimension to resolve
the spectral while averaging the underlying spatial information. The altitude coverage is given by the vertical
detector direction, resulting in a finely resolved vertical temperature profile for one image.

In light of this, we explore a novel processing approach that exploits the spatial information along the
horizontal axis as well. We propose to split the interferogram into two halves, mirror it around the center and
perform a retrieval on both sides separately, obtaining two spatial cross tracks of independent temperature data.
Assuming that the instrument views backward, consecutive measurements give along track sampling. Combining
this with the split interferogram method and the usual fine vertical resolution of the instrument, it provides 3d
information on the atmospheric temperature field which allows to obtain some information on 3d propagation
characteristics of atmospheric waves.

In our research, we delve into the viability, advantages and constraints of the split interferogram approach.
We will discuss the impact of horizontal temperature variation onto the retrieval result. We show the impact
of background temperatures on the retrieval. Furthermore, we discuss the influence of apodization onto the
retrieval of split interferograms.

Keywords: Atmospheric Remote Sensing, Fourier transform spectroscopy, CubeSats, spatial heterodyne inter-
ferometer, single-sided interferogram

1. INTRODUCTION

The dynamical structure of the mesosphere and lower thermosphere (MLT) is primarily influenced by atmospheric
waves like planetary waves, tides, and gravity waves.! Gravity waves transfer energy from lower altitudes
to the MLT region. Common sources of gravity waves in the lower atmosphere include uplift of air masses
due to orography, convection, and unstable jets, while higher altitude sources remain less understood but can
significantly impact the MLT region.? Global circulation models typically parameterize small and medium-scale
gravity waves.?

To measure temperature in the MLT region, Oz (0, 0) atmospheric A-band emissions at 762 nm are utilized.*"
A limb sounding spatial heterodyne interferometer (SHI) is developed collaboratively by the Jiilich Research Cen-
ter and the University of Wuppertal in Germany.® The instrument derives temperature from relative intensities
of the emission lines, eliminating the need for absolute radiometric calibration and easing the calibration process.
This emission is observable during the day and partly at night.
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Figure 1: Schematic of the SHS instrument

The instrument functions like a camera, mapping the atmospheric scene onto the detector. The SHI is used
to detect the spectrum of the Os A-band emissions, superimposing spectral information along the horizontal
detector axis. Traditional processing extracts spectral information along the horizontal direction and spatial
information along the vertical direction, generating a finely resolved 1-D temperature profile from a single image,
which can be used to derive wave parameters.?>'°

To exploit additional spatial information in the horizontal direction, a new processing method is proposed,
enabling the retrieval of two 1-D temperature profiles from one image using single-sided interferograms, mirrored
at the center. This method would allow for resolving medium-scale gravity waves.! The paper presents the
details of this methodology, starting with the introduction of the instrument in Sec.2 followed by an assessment
of the novel processing method using single-sided interferograms in Sec. 3. Hereby, we look at the temperature
sensitivity of the retrieval with respect to the temperature variation in horizontal direction in Sec. 3.1. Further, we
assess the locations of the retrieved temperatures using half interferograms for simulated horizontal temperature
variations in Sec. 3.2. At last we assess the effect of apodization onto the retrieval using half interferograms in
Sec. 3.3.

2. SPATIAL HETERODYNE INTERFEROMETER

The spatial heterodyne interferometer (SHI) operates similarly to a Michelson interferometer, but instead of
using two mirrors, it utilizes fixed tilted gratings.''”'* Figure 1 presents a schematic of the SHI instrument.
Incident light is directed by front optics onto diffraction gratings after passing through a beam splitter. Camera
optics then image the gratings onto a 2-dimensional focal plane array (FPA). The tilt angle of the wave fronts,
and consequently the interference pattern frequency on the FPA depends on the frequency of the incoming light.
Multiple emission lines create superimposed cosine waves across the FPA in the horizontal detector dimension.
A single measurement therefore contains spatial information along the vertical and superimposed spectral and
spatial information along the horizontal detector axis, corresponding to the vertical and horizontal across-track
axis in the atmosphere.

Mathematically, a 1D interferogram can be described by!? :16
bl
I(x) = / S(o,z) [1 + cos(2m f(o)z)] do, (1)
b0

where S(o, z) is the radiance variation across the horizontal field of view and and [bg, b1] define the spectral
limit of the bandpass filter. The spatial frequency f corresponds to the wavenumber by f(o) = 4(0—oy,) tan 0, M,
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where o7, and 6, are the Littrow wavenumber and Littrow angle, respectively, and M is the magnification factor
of the camera optics. The specification of the current instrument version is given in Tab. 1.

Table 1: Summary of instrument specification

Parameter Property
Littrow wavenumber 13047 cm™!
Littrow angle 6.6°
Magnification factor of camera optics | 0.57
Groove density of gratings 300mm~!
Spectral range 13059cm~! to 13166 cm ™!
Field of view 1.3 deg?
(=~ 60km? for orbit altitude of 600 km)
Detector columns/rows 860/860
Pixel pitch 11 pm

3. RETRIEVAL OF HORIZONTAL TEMPERATURE VARIATION

In the conventional processing, a Fourier transformation is applied along the x-axis to convert it into a spectrum,
and inverse modeling is used to derive the temperature from the spectral signature. In contrast, our proposed
processing method involves splitting the interferogram and mirroring it around the center, taking advantage of
its symmetry. This yields two interferograms, enabling the extraction of an averaged temperature for both the
left and right sides of the field of view, resulting in two temperature retrieval results per altitude layer. First
examples showed the feasibility of this method.!® However, the difference between the two retrieved temperatures
was found to be closer than what the mean temperature of each side suggested. This discrepancy is attributed
to larger deviation from the mean intensity around the center of the interferogram, which have a more significant
impact on the retrieved temperature.'”

To further validate and generalize these results, we conducted a sensitivity study in Sec.3.1, focusing on the
temperature retrieval’s sensitivity to horizontal temperature variations. In Section 3.2, we carry out a retrieval
using the split interferogram method on an extensive collection of horizontal temperature fluctuations, commonly
produced by gravity waves. Finally, in Sec. 3.3, we investigated the influence of apodization on the retrieval
process.

3.1 Sensitivity to horizontal temperature variations

In this section, we evaluate the sensitivity of the temperature retrieval to horizontal temperature variations. Our
goal is to estimate how the retrieved temperature changes in response to localized temperature changes along the
horizontal across-track axis. The results, presented in Figure 2a, display a wavy pattern reflecting the varying
intensities of emission lines and their modulation through the instrument. It is evident from the matrix that the
retrieved temperature is most sensitive to temperatures close to the main lobe, regardless of the temperature level.
To further analyze this sensitivity, we present smoothed rows of the matrix in Figure 2b. For lower temperatures
below 300K, the sensitivity is lower around the main lobe and higher towards the sides. Temperature levels
around 500 K, corresponding to temperatures in the lower thermosphere, exhibit the highest sensitivity at the
central peak and the lowest sensitivity towards the sides. This effect diminishes for temperatures above 500 K.
Consequently, the temperature retrieval is least sensitive to horizontal temperature variations around 500 K.

3.2 Temperature retrieval of horizontal temperature variations

To get a comprehensive picture, we perform a split field of view retrieval of interferograms incorporating tem-
perature variations typically caused by gravity waves. Hereby, we model a sinusoidal horizontal temperature
variation with parameters like background temperature, amplitude, horizontal wavelength, and phase.
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Figure 2: (a) Derivative of temperature at a given horizontal position for multiple temperature levels; (b) Selected
rows of (a) and smoothed by a running mean with window size 101

For the further analysis we introduce the term ’location’ of a retrieved temperature, which is defined by the
abscissa of that atmospheric model temperature, which is equal to the retrieved one. The distance between the
locations of each side serves as a measure of how well the presence of a horizontal temperature variation can
be characterized. The results are displayed in Figure 3. The amplitude of the temperature variation, shown
in Figure 3a, has no influence on the retrieved temperatures’ location. However, the temperature background
(Figure 3b) affects the distance of the retrieved temperatures due to varying sensitivities of the Oy A-band
emission with respect to temperatures, as explained in Sec. 3.1. Regarding the phase (Figure 3c), ¢ = 0 and
¢ = m represent the crest and trough of the captured temperature residual. In these cases, the temperature
variation is low at the center and large at the edges, which works against the increased temperature information
around the center and results in temperatures being further apart from each other. The horizontal wavelength
of the temperature variation slightly affects the distance of the retrieved temperatures (Figure 3d). Short
wavelengths result in a wider distribution of locations because the phase has a more pronounced influence.

In conclusion, accounting for the background temperature and the phase allows for a good estimate of the
location of the retrieved temperature and therefore a reliable base for deriving the horizontal wave parameter
components.

3.3 Influence of apodization

Apodization is a common practice in Fourier transform spectroscopy, aiming to modify the instrument line
shape (ILS) to minimize the spurious side lobes of the sinc-function (Figure 4b, Norton-Beer 1.0, representing
the usual ILS without apodization).'® By doing so, apodization enhances the localization of spectral information
as shown in Fig. 4b, making the measurements more robust against instrumental errors. However, apodization
comes with the trade-off of reduced spectral resolution, as it decreases the side lobes. In this analysis, the
Norton-Beer apodization functions (Figure4)'92! are utilized, which are widely popular in Fourier transform
spectroscopy.?% 23

To investigate the impact of apodization on split field of view retrievals, we conducted simulations with a
linear horizontal temperature variation at various background temperature levels and apodization strengths.
The results are depicted in Figure 5. When using the full interferogram, we were able to recover the mean
temperature for each temperature level, independent of the apodization strength. However, for single-sided
interferograms, stronger apodization reduced the localization difference between the retrieved temperatures of
the left and right side. This effect can be understood by revisiting Figure 4a, where apodization decreases the
interferogram’s intensity towards the edges, placing a greater weight on the central information content. As
explained in Sec. 3.1, this amplifies the tendency of retrieved temperatures to be closer to the center. The case
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Figure 3: Relative location of the retrieved temperatures within the temperature variation using single sided
interferograms (a) for varying amplitude, (b) for varying temperature background level, (c) for varying horizontal
wavelength and (d) for varying phase; the box extends from the lower to upper quartile values, the whiskers
extend from the 5th to 95th percentile;

without apodization (Norton-Beer 1.0) exhibited a decrease in the temperature difference between the two sides
for temperature levels between 160 K and 500 K, followed by a slight increase for higher temperatures. This
observation aligns with the results shown in Figure 3b.

In conclusion, when using mirrored single-sided interferograms, apodization becomes not only a trade-off
between spectral resolution and spectral confinement but also between spatial resolution of the two retrieved
horizontal temperature data points and robustness against errors. Hence, using single-sided interferograms
imposes higher requirements for instrument error mitigation if one aims to maintain a significant across-track
distance between the two retrieved temperature data points.

4. CONCLUSION

This study explores the potential of a novel processing method that enables the retrieval of horizontal across-
track temperature variations using the presented SHI limb-sounder. With this approach, two temperature
profiles distributed across-crack can be obtained instead of the usual single profile. Upon examining the impact
of horizontal temperature variations across the field of view, we found that the retrieved temperatures tend to be
closer to the center of the field of view. A sensitivity study of the retrieved temperature for a given temperature

Proc. of SPIE Vol. 12730 127300K-5



1.0

0.8

o
o

Relative intensity

I
S

Norton-Beer 1.0

0.8

0.6

0.4

Relative intensity

0.2

Norton-Beer
— 1.0
— 11
=12
— 13
— 14
— 15
— 16
— 17

0.2 0.0 a =
-0.2
0.0
0 200 400 600 800 -4 -2 0 2 4
Detector position [Pixel] Spatial freqeuncy [cm~1]
(a) (b)

Figure 4: Apodization functions used for the assessment;'? (a) apodization function in the spatial domain; (b)
apodization function in the spectral domain;
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Figure 5: Retrieved temperatures using a linear temperature gradient for multiple temperature levels and different
strengths of apodization; the number refers to the full width half maximum (FWHM) of the apodization function
relative to the sinc function and thus higher number means stronger apodization;

variation revealed that the majority of temperature information is concentrated around the interferogram’s
center. Additionally, we found that apodization impacts the spatial resolution of the data obtained through
this method. Generally, weaker apodization provides better spatial resolution across the line of sight, although
it needs to be carefully balanced against model or instrumental uncertainties. In practical terms, this method
allows for the horizontal resolution of medium-scale gravity waves from such data.' However, it is essential to
consider that the phase and background temperature of the captured wave can affect the location of the retrieved
temperatures.
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