
Assessing land redistribution plans using stochastic multicriteria 
acceptability analysis

Demetris Demetriou 

Department of Civil Engineering & Geomatics, Cyprus University of Technology, Saripolou 2-8, 

3036, Lemesos, Cyprus  

ABSTRACT 

Land consolidation is a primary land management approach that aims to achieve sustainable agricultural 

development. Land redistribution is a complex decision-making process that involves reallocating land parcels and 

ownership. Ideally, it involves the production of a number of alternative plans, which can be assessed using multi-

criteria decision making (MCDM), to rank alternatives and select the "best" plan based on their performance. Currently, 

a deterministic approach (D-MCDM) is used for this purpose, which inherently ignores uncertainties and variabilities of 

both the scores for each criterion as well as the weights assigned to each criterion. Thus, a core research question is: 

What will be the ranking of alternative land redistribution plans if a stochastic multi-criteria decision-making (S-

MCDM) approach is utilised? Hence, we have utilized a specific type of S-MCDM method called Stochastic Multi-

criteria Acceptability Analysis (SMAA). SMAA is designed to deal with decision-making problems where there is 

uncertainty in the criteria weights, performance of alternatives, or both. The SMAA methodology was implemented 

using an open-source software called JSMAA. The comparison of outputs resulting from deterministic and stochastic 

MCDM showed different rankings for alternative plans. This suggests that the use of D-MCDM when uncertainties 

exist can lead to misleading decisions. This finding is important for land consolidation planners, decision-makers, and 

stakeholders involved in a project, because the "best" plan is one that satisfies the project objectives. Furthermore, 

other decision-making domains that involve uncertainties should be aware of the use of D-MCDM instead of S-

MCDM. 
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1. INTRODUCTION

Land consolidation is a primary land management instrument1 aiming at achieving sustainable rural development, which 
is strongly supported by international organisations such as FAO2. Land consolidation involves land tenure restructuring 

and the provision of appropriate infrastructure, such as roads and irrigation networks. It aims to reduce land fragmentation3 

and promote agricultural development policies. It also includes broader aims aligned with several Global Goals of the UN 

2030 Agenda for Sustainable Development4. The most complex process of land consolidation is land reallocation 

(sometimes referred to as reallotment or reparceling), which can be divided into two sub-processes: land redistribution5 

and land partitioning 5,6.  

Land redistribution refers to the process of making decisions about the transfer of land ownership, which typically 

addresses five key issues in the case of Cyprus. These issues include identifying which landowners will receive property 

in the new plan and which will not, determining the total area and value of the property each landowner will receive, 

specifying the number of parcels granted to each landowner, determining the area and land value of each new parcel, and 
identifying the approximate location of each landowner's new parcels. The process of land redistribution is guided by 

legislation and related documents, the existing land tenure structure, rules of thumb, landowners' preferences, and the 

experience of planners. The outcome of this process is a comprehensive plan that consists of land blocks enclosed by roads, 

with each block containing a set of marks representing the approximate location of new parcels. Each mark is associated 

with an approximate size, land value, landowner, and other relevant information about the new parcel. From a modelling 

perspective, this can be considered a multicriteria decision-making problem that involves assessing a discrete number of 
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alternative solutions provided by either experts or a system to determine the most advantageous option, which is the focus 

of this paper. 

The process of land partitioning starts with a land redistribution plan, which entails dividing land into smaller parcels in 

accordance with specific criteria and design constraints. The outcome of this process is a final land consolidation plan that 
is carried out block by block. This process typically relies on trial and error and is based on legislation, empirical design 

criteria, geometric constraints, and rules of thumb. The aim is to produce a plan with well-shaped parcels that have access 

to roads. The land redistribution process assigns each new parcel an approximate area, land value, and location, taking into 

account constraints such as a minimum parcel size set by legislation as a fundamental principle. Additionally, existing 

boundaries, such as physical objects like streams, rivers, or fences, should be considered if possible. Other technical 

constraints include the presence of buildings or other types of construction, which should also be taken into account. In 

modelling terms, this process can be viewed as a multi-objective optimisation problem subject to a set of constraints that 

seeks to find the best solution(s) from an infinite number of potential solutions 7,8. One type of land partitioning is urban 

land subdivision development, which involves using GIS-based tools to design plots. 

Several efforts have been made to automate the preparation of land redistribution plans using various methods and GIS-

based technologies. Based on our recent search in bibliographic databases, it seems that all research studies on land 

redistribution (for land consolation projects) took place from 1990 to 2012. Most of these studies do not separate land 
redistribution in producing plans or assessing alternative plans. Thus, they treated the procedure as an optimisation process, 

seeking an optimum solution based on a number of factors and criteria. Specifically, some studies 10,11,12,13,14,15,16 handled 

the process based on mathematical optimisation; hence, they did not produce a discrete number of alternative solutions to 

assess them and select the best solution. Hence, they attempt to directly reach an optimum solution through the optimisation 

process. Similarly, other studies 17,18 have attempted to introduce fuzzy logic based on four reallocation criteria without 

carrying out a multi-criteria decision-making (MCDM) process and selecting from alternative solutions. Demetriou et al.5 

utilized GIS and Expert Systems to automatically produce a number of alternative land redistribution plans, which then 

assessed using MCDM using a deterministic approach. Therefore, despite the fact that the land redistribution process 

inherently involves uncertainties in outputs, no study has treated it using a stochastic multi-criteria decision analysis 

approach.  

The study by Demetriou et al.5 revealed the presence of uncertainties in the land redistribution process. In particular, the 

sensitivity analysis demonstrated that the weights assigned to the criteria are prone to uncertainty as these preferences are 

subjective and may differ significantly between decision-makers' perceptions. Consequently, the available methods for 

defining the weights may result in different outcomes. A general finding is that the ranking of alternatives is highly 

sensitive to the alteration of the weights of the criteria, as also identified by Janssen and Rietveld19. Thus, planners should 

be cognizant of both the weights assigned to each criterion and the weighting method utilised. Additionally, the 

standardisation process of employing value functions involves considerable subjectivity, as these functions have been 

defined by experts and the process of assessing them is inherently uncertain. Furthermore, the calculation of the evaluation 

criteria scores is contingent upon expert systems' solutions and other assumptions, which inherently include uncertainties. 

In light of the above, a research challenge is to consider the uncertainties in assessing alternative land redistribution plans 

through a stochastic multi-criteria decision analysis approach. Consequently, a core research question is: Do stochastic 
MCDM approaches reach different rankings of alternative plans compared with the ranking resulting from the deterministic 

MCDM method?  The answer is crucial in investigating and ensuring the reliability of the assessment regarding the 

selection of the best plan, which is input to the next stage, that is, land partitioning (the final stage of a land consolidation 

plan). Obviously, the answer to the research question is important for land consolidation planers, decision makers, and 

stakeholders involved in a project, because the “best” plan is that which satisfies the criteria set out better than any other 

plan, hence the project objectives.  

Thus, to answer the research question, the Stochastic Multicriteria Decision-Making (S-MCDM) method was implemented 

using the same dataset used by Demetriou et. al.5. S-MCDM methods are a class of decision-making tools designed to 

handle situations in which decisions must be made with ambiguities. These methods incorporate randomness or uncertainty 

in the criteria or decision-making environment, making them suitable for complex decisions where outcomes are not 
deterministic. S-MCDM methods are particularly useful in fields where decision outcomes are uncertain owing to 

variability in data, incomplete information, or inherent randomness in the system being analysed. One specific type of S-

MCDM method is Stochastic Multi-criteria Acceptability Analysis (SMAA)20,21, which is designed to deal with decision-
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making problems where there is uncertainty in the criteria weights, the performance of alternatives, or both. It is a family 

of methods that helps decision-makers to find acceptable choices without requiring a precise determination of criteria 

weights or even exact performance values for each alternative. 

Based on the above framework, this study is further divided into three sections: the methodology utilised (Section 2), the 
results of a case study (Section 3), and a summary of the main conclusions (Section 4).  

2. MATERIAL AND METHODS

Multi-criteria decision methods (MCDM) are a subfield of decision theory that deal with decision-making problems 

involving numerous evaluation criteria24. These methods are frequently employed to assess alternative solutions based on 

conflicting criteria 25, and have evolved to provide a set of techniques and procedures for organizing decision problems 

and evaluating alternative solutions 26,27. The main objective of MCDM is to facilitate effective decision-making. MCDM 

utilizes specific definitions, with a criterion being a general term encompassing attributes and objectives. An attribute 
represents the characteristics of entities in a real-world geographical system, while an objective is a statement regarding 

the desired state of the system. Options, or alternative courses of action, are evaluated against multiple objectives, with 

different land redistribution plans being an illustration of alternative options. Malczewski distinguishes two broad 

categories of MCDM: multi-attribute decision-making (MADM) and multi-objective decision-making (MODM) 26,27. 

MODM and MADM are two separate decision-making processes in the field of decision making. MODM involves a 

continuous search for the optimal solution from a large set of feasible alternatives, which are only implicitly defined. In 

contrast, MADM entails a selection process between a discrete and limited number of alternatives that are explicitly known 

and characterized by several attributes. A general MADM model was presented in Malczewski27, which was utilized by 

Demetriou et al.5 in a deterministic model (D-MCDM) that does not account for the uncertainty of both the scores and 

weights of the criteria used to assess the performance of the examined alternative solutions. However, in practical MCDM 
scenarios, it is customary to encounter incomplete, imprecise, and uncertain information regarding both the evaluation 

criteria and the preferences of decision-makers. To tackle this uncertainty, various MCDM approaches have been 

suggested, including the stochastic multi-criteria acceptability analysis (SMAA) family of methods 28,29, which is employed 

in this research. 

The SMAA method, which was introduced by Lahdelma et al.30, addresses decision-making issues with multiple criteria 

when both criteria scores and their weights are uncertain. The core concept behind SMAA involves calculating volumes 

through a reverse analysis of the weight space to identify the sets of criteria weights that render each option the most 

favoured. The SMAA employs Monte Carlo simulations to generate descriptive metrics that aid in the decision-making 

process. Specifically, it uses these simulations to determine the likelihood of each option being the most preferred, its 

potential ranking, or its classification into categories, thereby facilitating a sensitivity analysis. In addition to the initial 

SMAA, various adaptations have been developed, including SMAA-2 by Lahdelma and Salminen,31. Whereas the original 
SMAA method focuses on distinguishing between (more or less) acceptable options without considering other rankings, 

SMAA-2 expands on this by evaluating all possible rankings. This is done by analysing the entire spectrum of weight 

vectors for each alternative, from the highest to the lowest rank, thereby providing a more comprehensive framework for 

decision-making. Pelissari et al.29 have provided general guidelines and a framework for selecting an SMAA variant. In 

addition, to determine whether the criteria involved in the process are independent or dependent, it is crucial to use different 

methods. Lahdelma et al.30 propose two approaches for handling dependent uncertainties in MCDM. 

SMAA uses three descriptive measures for decision support: the rank acceptability index, central weight vector, and 

confidence factor. These measures are computed through Monte Carlo simulation and may contain errors, although the 

error margins are typically minimal 32. The acceptability index reflects the proportion of evaluations that make an 

alternative the most preferred, with values ranging from 0 to 1. A value of 0 indicates that the alternative is never considered 
the best with the assumed preference model, while a value close to 1 signifies that the alternative is the most suitable 

solution. The central weight vector is the expected centre of gravity of the favourable first-rank weights for an alternative, 

representing the preferences of a typical decision maker (DM) supporting that alternative. By presenting the central weight 

vectors to the DMs, an inverse approach to decision support can also be applied; instead of eliciting preferences and 

constructing a solution to the problem, the DMs can learn what kind of preferences lead to which actions without providing 

any preference information33. The confidence factor is a measure of the probability that an alternative is preferred, as 
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indicated by its central weight vector. The main purpose of this assessment is to evaluate the accuracy of the criteria used 

to distinguish efficient alternatives. Hence, it is recommended to avoid options with low confidence factors and gather 

more reliable data to make an informed decision if they are deemed attractive. The formulas for calculating the three basic 

metrics of the SMAA method are expressed as follows (Tervonen34, Lahdelma and Salminen31): 

Rank acceptability index (α, RAI): 

where  is the value of alternative given weight vector , A is the set of alternatives and is the 

probability distribution over the weight space W. 

Central weight vector (CWV): 

where  is the set of weight vectors that make  the most preferred alternative. 

Confidence factor (CF): 

 where  is the subset of weight vectors where  alternative is preferred over . 

The process of selecting appropriate criteria for this study began with the definition of a hierarchical objective tree based 

on the goals, aims, and objectives of the land consolidation problem as presented in Demetriou et. al.5. This was followed 

by the formulation of a specific land redistribution objective tree that included the aims, objectives, and corresponding 
criteria/attributes used to evaluate alternative land redistribution plans. As a result, five criteria were suggested: the mean 

size (as a percentage change) of the new parcels (C1); the mean parcel concentration coefficient (PCC) (C2); the change 

(as a percentage) in the number of landowners (C3); the percentage of ownerships that were "completed," which involved 

reaching the minimum size limit provided by legislation (C4); and the mean landowner satisfaction rate (C5). The two new 

concepts, PCC and LSR, were introduced by Demetriou et al.,5. PCC (C2) for each holding is measured on a scale between 

-1 and 1, with a value of 0 indicating no change in the dispersion of a holding's parcels before and after land consolidation.

A value of +1 signifies "perfect concentration," while -1 represents "worst concentration". LSR serves as an indicator that

assesses the level of satisfaction of landowners in relation to the location of their new parcels. This is based on the parcel

priority index (PPI) initially proposed by Demetriou et al.35, which ranks the preferences of landowners with respect to the

locations of the new parcels they desire. The calculation of the LSR entails identifying which preferences of each

landowner have been fulfilled and assigning a proportional satisfaction rate (known as the partial satisfaction rate, PSR)
to each new parcel based on the ranking of the preferences satisfied, with a maximum value of 100%.

To ensure that the SMAA could be used with reliability for certain data, a correlation matrix was run between all five 

variable evaluation criteria (based on the original data at the level of parcels and landowners) involved in the SMAA 

process. Correlation analysis showed a very weak correlation (0.04 to 0.20) between the four variables C1, C2, C4, and 

C5 and a weak correlation (0.47) between C1 and C3, suggesting the reliability of using SMAA for a particular set of 

alternative solutions.   

In practice, the SMAA methodology was implemented by utilising the open-source software called JSMAA which was 

implemented in Java and developed by Tervonen34. The standardisation method used in SMAA to convert each criterion 

on a common scale between 0 and 1 is linear. As noted, this study is a continuation of Demetriou et al.’s5 study, and 
inevitably, they use the same evaluation criteria and the same alternative land redistribution plans so that outputs will be 

directly comparable, that is, based on deterministic and stochastic MCDM. The output scores for each alternative were 

automatically derived from LandSpaCES35 which is a GIS-based land redistribution expert system as part of 

LACONISS36. Initially, to ensure the best comparison of deterministic and stochastic outputs, the same cases and 

scenarios examined by Demetriou et al.5. Subsequently, we ran new scenarios (e.g. using different weighting vectors and 

random distributions) based on the SMAA-2 method to investigate their outputs in terms of ranking alternatives. The 

discussion of the outputs for both the cases and other scenarios follows

(1) 

(2) 

(3)
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3. CASE STUDY: RESULTS AND DISCUSSION

3.1 The case study area and the outputs of D-MCDM for Cases 1-4 

The SMAA was implemented in a real land consolidation project in the Paphos district of Cyprus. The village's 

administrative boundaries encompassed a total area of 492 hectares of low-lying land, while the consolidated region 

covered 195 hectares. An example of one of the four land redistribution alternatives is shown in Figure 1, focusing on land 

blocks 14, 15, and 16 (underlined numbers). Each centroid represents the approximate location of a new parcel, and the 

number above each centroid refers to the landowner’s ID. 

 Figure 1: An example of land redistribution alternatives produced by LandSpACES (Demetriou et al.5) 

The D-MCDM method was utilized to evaluate four cases. Each “Case” represents a different weighing set for the five 

criteria. In Case 1, all five criteria were given equal importance. In Case 2, the weights were assigned to each criterion in 

descending order of importance: extremely high (score =100), very high (score=80), high (score=60), intermediate 
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(score=40), and moderate (score=30). In contrast, in Case 3, the weights were assigned in ascending order, while in Case 

4, they were determined by expert judgment: extremely high, high, high, intermediate, and very high. The ranking of each 

alternative for each case is illustrated in Figure 2. 

Several intriguing discoveries were made, revealing that none of the options consistently outperformed the others in all the 

scenarios. Specifically, Alternatives 3 and 10 emerged as the top choices in scenarios 1 and 3, and 2 and 4, respectively. 
However, Alternative 3 demonstrated a more consistent performance across all scenarios than Alternative 10. This was 

evident, as Alternative 3 secured second place in scenarios where Alternative 10 was ranked first. On the other hand, 

Alternative 10 exhibited significant variability in its rankings, achieving first, sixth, and ninth positions. This variability 

makes this the most unreliable option. Interestingly, all other options show a two-position change in their rankings. As a 

result, Alternative 3 was considered the superior choice because of its stability and ability to maintain balanced 

performance across all evaluated criteria. 

      Figure 2: The ranking of alternative land redistribution using D-MCDM (Demetriou et al.5) 

3.2 The outputs of SMAA for Cases 1-4 

The SMAA method was ran for Cases 1-4, with the same weights of criteria for each case for comparing the “deterministic” 

and “stochastic’ outputs. To adopt the qualitative weights in SMAA-2, numerical values expressing the same importance 

were converted appropriately. For all criteria and cases, the normal distribution was used to represent the stochastic 

perspective of the criteria and ensure common assumptions for the range of criteria scores/values. The evaluation of 

alternatives using SMAA is based on the aforementioned three metrics: ranked acceptability index (RAI), central weight 

vector (CWV), and confidence factor (CF), which explained in section 2. The rank acceptability index (RAI) graph and 

the associated table for all the alternatives are shown in Figure 3. Table 1 presents the potential rankings for each alternative 

in Cases 1-4. For instance, a ranking of 2nd to 5th indicates that the relevant alternatives have equal possibilities of being 

ranked between those two positions, as they possess the same or very similar RAI values. 

In summary, some basic findings were identified. Specifically, Alternative 10 ranked 1st in Cases 1, 2, and 4 with RAI 

values of 0.91, 0.9, and 0.79, respectively. Alternative 10 ranked 2nd  in Case 3 with a RAI of 0.28 which is very close to 

Alternative 6 (and Alternative 7) which ranked first with a RAI of 0.32. Therefore, in Case 3, three alternatives (6, 10, and 

7) present very similar results; hence, the same possibilities rank 1st. For all these cases, the CF is the same or very close

to the value of the RAI, meaning that the probability of a particular alternative being ranked at a certain position is similar

to the RAI values, that is, a high RAI value combined with CF values and vice-versa. In contrast, in all cases, Alternative

8 ranked 10th with RAI values of 0.84,  0.85, 0.52, and 0.61, confirming that it is the worst alternative. The rest of the

alternatives, that is,  1, 4, and 9, present similar possibilities (RAI ranges between 0.20 and 0.14) to rank from 2nd to 5th

position, and the other alternatives, that is, 2, 3, 5, 6, and 7, ranked in a position between 6th  and 9th (except in Case 3, as

noted earlier).
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       Table 1: The potential ranking for each alternative in Cases 1-4 

 

By comparing these outputs with those derived from the D-MCDM it is concluded a disruptive output in terms of which 

is the best alternative. Especially, in D-MCDM, Alternative 3 ranked 1st and 2nd and it was judged that “Alternative 3 

presents a more stable behavior in all cases than Alternative 10…”, while in S-MCDM approach, clearly Alternative 3 

ranked in worse positions i.e. between 6th and 9th. In contrast, Alternative 10 which in D-MCDM ranked 1st in Cases 2 and 
4 and ranked 6th and 9th in Cases 1 and 3, ranked in S-MCDM as most acceptable in Cases 1, 2, and 4 and ranked 2nd   with 

a small difference from 1st. Thus, Alternative 10 clearly outperformed all the other alternatives using a stochastic approach, 

and in contrast, Alternative 3 ranked very low. Alternative 2, ranked 2nd and 3rd in D-MCDM and 6th to 9th in S-MCDM. 

Alternative 8 ranked last in all cases in both approaches, and Alternatives 1, 4, 9 and 5,6,7 were ranked in similar positions 

in both approaches.   

 

                     Figure 3: The rank acceptability index (RAI) for all alternatives assessed with SMAA 
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These outputs set out a critical question about the reliability or ranking of alternative plans using D-MCDM when both the 

scores of alternatives for various evaluation criteria and weights are prone to uncertainty. Thus, the uncertainty perception 

pointed out in the initial research is confirmed. Stochastic MCDM explicitly accounts for uncertainty in both the scores of 

the evaluation criteria and the weights of the criteria. This is more reflective of real-world conditions where data and 

preferences may not be precisely known. By using probability distributions rather than single-point estimates, stochastic 

MCDM provides a more nuanced understanding of the potential outcomes and their likelihood. 

Although less important, it should be noted that the differentiation of ranking in Case 3 is explained by Demetriou5 because 

the criteria are very sensitive in this case. This is because the weighting scheme in Case 3 can be considered as a paradox 

in terms of the importance of criteria that would normally be assigned by land consolidation experts because the first two 

and the last two criteria have a significant distance in terms of weighting class. Consequently, a slight change in the weights 

towards a more reasonable scheme causes a change in the rank order of the alternatives. By contrast, the criteria are much 

less sensitive for the other three cases because they involve a "sensible" weighting pattern in terms of practice. 

3.3 The use of SMAA with five different scenarios 

JSMAA software provides the following five random distribution models which can be adopted for criteria variables: 

Gaussian, LogNormal, LogitNormal, Beta and Discrete. The results in terms of decision making and the evaluation of 

alternative solutions can vary significantly in different distribution types of stochastic variables used in a model. The type 

of distribution chosen to represent the stochastic (random) variables in a model can have a profound impact on the model's 
outputs and the decisions derived from it for several reasons. The type of distribution chosen reflects the analyst's 

understanding and assumptions regarding the uncertainty inherent in the system being modelled. This choice depends on 

the nature of the data, existence of empirical distributions of historical or observed data, and adoption of theoretical 

considerations. Hence, some decision-making variables follow specific distributions, the range and boundaries of data, the 

existence of extreme values, and computational simplicity. In summary, the selection of stochastic distributions is a critical 

step that depends on a nuanced understanding of the variables in question, specific context of the decision-making process, 

and nature of the uncertainties involved. It requires balancing empirical evidence, theoretical considerations, and practical 

constraints to capture the expected uncertainties and their impact on decision-making outcomes. 

Based on these considerations, we selected to use the normal and beta distributions that seemed to fit quite well with the 

original data for the five evaluation criteria. The Gaussian distribution, also known as the normal distribution, is one of the 

most important probability distributions in statistics, due to its widespread occurrence in many natural phenomena and its 
mathematical properties. Beta distribution is a family of continuous probability distributions defined on the interval [0,1], 

making it particularly useful for modeling random variables that represent probabilities or proportions. Its flexibility in 

shape makes it suitable for various applications ranging from Bayesian statistics to quality control and project management. 

The beta distribution is characterised by two positive shape parameters, α and β, which influence the shape of the 

probability density function (PDF). These parameters allow the beta distribution to take on a variety of shapes, including 

uniform, U-shaped, J-shaped, or bell-shaped, providing flexibility to model phenomena with different degrees of skewness 

and kurtosis. 

Based on the above background and the direct comparison of outputs (i.e. ranking alternatives 1-10) between D-MCDM 

and S-MCDM, they were ran the following three scenarios for further investigation of stochastic outputs:  

Run 1: All Gaussian random distributions for all criteria with no weights. 

Run 2: All Gaussian random distributions for all criteria with equal weights. 

Run 3: Various distributions (three Gaussian and two beta distributions) with no weight. 

Each scenario represents the utilization of varying random distributions, such as Gaussian or beta distributions, and distinct 

weighting sets, including equal weights or no weights. Consequently, scenarios differ from the prior terms "Case," which 

alludes to different weighting sets. It should be also noted that, the term "no weights" differs from using equal weights, as 

it does not imply equal importance for all criteria. Instead, it indicates unknown or unspecified criteria importance. The 

method examines how each alternative performs across all possible weight combinations, rather than assuming equal 

weights for all criteria. The goal is to assess each alternative's ranking robustness without committing to a specific 

weighting scheme. In SMAA, when no specific weights are provided, the method does not default to equal weights. Instead, 

it considers all possible weight combinations that meet certain conditions, such as non-negativity and summing to one. 

This involves generating random or systematically varying weight vectors from a weight space, often through Monte Carlo 

simulations or other sampling techniques. These vectors represent different sets of preferences a decision-maker might 
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have. By evaluating each alternative across this spectrum of possible weights, SMAA calculates the acceptability index 

(the probability of an alternative being the most preferred) and other relevant metrics without requiring the decision-maker 

to specify weights. The results and findings are summarised as follows: 

Runs 1- 3: Alternative 10 ranked 1st in all three runs, with an RAI 0.71 (with CF 0.99), 0.91 (with CF 0.91), 0.58 (with CF 

0.84), respectively. Also, in all runs Alternative 8 ranked last i.e. 10th with RAI 0.69 (with CF 0.99), 0.84 (with CF 1.0) 

and 0.36 (with CF 0.84). The rest of the alternatives, that is,  6 and 7, present similar possibilities (RAI ranges between 

0.15 to 0.22) to rank 2nd or  3rd position, Alternatives  2 and 3 ranked in a position between 4th  and 6th, and all the other 

alternatives ranked between 7th and 9th for all three runs.  Alternative 3, which, as mentioned above, was judged as the best 

in past research could ranked 4th or 5th with very low RAI. This confirms again that uncertainty can alter the ranking and, 

hence, the decision making about which alternative to follow to satisfy project objectives in the best way. 

A new question arose: “what would happen in terms of ranking alternatives, if the best alternative i.e. 10 removed from 

the evaluation process?”. The rationale for eliminating the top-performing alternative, which plainly ranked first and 

significantly exceeded all the others, was to ascertain whether another alternative would likewise considerably outperform 

all the others in the absence of Alt-10. Thus, they were run another 2 scenarios: 

Run 4: All Gaussian random distributions for all criteria with no weights, while removed Alternative 10 

Run 5: Various distributions (3 Gaussian and 2 beta) with no weights, while removed Alternative 10 

In both cases, Alternative 6 seems (RAI 0.21,0.23) to be slightly better than 7 (0.18,0.20) with CF 0.48 and 0.36 

respectively. The remaining alternatives had considerably lower RAIs. Therefore, although Alternative 10 was removed, 

none of the other alternatives seemed the best, and Alternative 6 did not considerably outperform the others, as Αlternative 

10 in the previous analysis. In addition, CF is quite low (0.48), indicating that the probability that Alternative 6 is ranked 

as the best is in the middle of the confidence scale.  

4. CONCLUSIONS

The comparison of outputs regarding the assessment of alternative land redistribution plans between deterministic and 

stochastic MCDM showed critical differences in the outputs. In particular, the best alternative land redistribution plan 

resulting from S-MCDM is different from the best alternative based on the D-MCDM approach. In this regard, it should 

be noted that the best alternative derived from the D-MCDM is ranked quite low with the S-MCDM. In addition, there is 

considerable differentiation in the ranking of the other alternatives between the two approaches.   These outputs set out a 

critical question about the reliability or ranking of alternative plans using D-MCDM when both the scores of alternatives 

for various evaluation criteria and weights are prone to uncertainty. Thus, the uncertainty perception pointed out in the 

initial research is confirmed. Clearly, the stochastic approach explicitly accounts for uncertainty in both the scores of the 

evaluation criteria and criteria weights. This is more reflective of real-world conditions where data and preferences may 

not be precisely known. By using probability distributions rather than single-point estimates, stochastic modelling provides 

a more nuanced understanding of the potential outcomes and their likelihood. This suggests that the use of D-MCDM when 

uncertainties exist can lead to misleading decisions with socioeconomic consequences for a land consolidation plan. This 

finding is important for land consolidation planners, decision-makers, and stakeholders involved in a project because the 

"best" plan is one that better satisfies the project objectives. Furthermore, other decision-making domains that involve 

uncertainties should be aware of the use of D-MCDM instead of S-MCDM.  
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