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ABSTRACT 

Climate change drives the environment to more extreme weather events. Increased air, land surface and canopy surface 

temperatures affect the industry of agriculture in different ways. Significant crop damages and losses are emerging and 

spreading throughout different regions, accompanied by water scarcity and imposed restrictions on farmers' water usage. 

The Eastern Mediterranean, Middle East, and North Africa (EMMENA) region is one of the most affected areas globally. 
The United States (US) developed a system for monitoring droughts in different counties and classifying them into six 

categories (i.e., no drought, abnormally dry, moderate drought, severe drought, extreme drought, and exceptional drought) 

based on the assigned drought score. To predict drought scores, Artificial Intelligence (AI) methodologies are applied to a 

dataset that combines meteorological variables from the NASA Langley Research Center with drought scores from the US 

drought monitor system. The main objective of this work is to propose a novel explainable ΑΙ technique based on 

unsupervised learning for drought severity predictions and raise the awareness for drought events in the wider EMMENA 

region. 
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INTRODUCTION 

Numerous extreme weather events are the outcome of the climate crisis. Among these events, droughts are a major threat 

to global water security, agricultural productivity, and ecosystem’s health. Accurate prediction of drought events  is 

essential for developing mitigation strategies[1], [2]. By leveraging the ability of Artificial Intelligence (AI) to analyze 

vast datasets of environment and climate variables, advanced methods are developed for drought predictions.  

Different clustering algorithms are tested on segmentation of Southern It0aly to drought regions and then regression models 

are used for droughts’ time-series forecasting. The hybrid M5P-SVR model achieved an R-squared (R2 or coefficient of 

determination) of 0.91 [3]. Another work uses well-known drought indice0.s such as standardized precipitation index (SPI), 

standardized precipitation evapotranspiration Index (SPEI) and standardized runoff index (SRI) to assess the drought in 

semi-arid environments. Several machine learning (ML) models are utilized for the prediction of those indices using 

different meteorological variables (e.g., temperature, rainfall, etc.). The hybrid wavelet-GPR achieved the highest accuracy 

with R2 of 0.809 [4]. A similar work showed that wavelet-enhanced multi-layer perceptron neural network (NN) achieved 
the highest accuracy in drought prediction [5]. Additional work uses a hybrid deep learning model which consists of a 

convolutional NN as the feature extractor and a long short-term memory NN as the temporal predictor for droughts[6].  

However, all the aforementioned methodologies lack explainability and interpretation [7], [8]. Only a few works examine 

the capabilities of using explainable AI (XAI) to understand the features with positive contribution for accurate predictions 

related to drought monitoring. A study conducted in the area of New South Wales, Australia showed that it is important to 

interpret such models based on region and shorter time periods instead of decade-based explanations[9]. An extension of 

this study explains how climatic variables are important at a monthly scale, as well as their varying annual ranges based 

on SHAP-based (SHapley Additive exPlanations) explanations [10]. Extreme gradient boosting (XGB) model is used to 

explore the drought impacts in the United States (US). Specifically, the patterns between the SPI and drought impact reveal 

that negative values of the index are positively leading the model to complex drought impacts [11]. A study conducted for 

Canadian droughts using the interpretable XGB model achieved an overall accuracy of 71.3% in predicting drought maps. 
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The application of SHAP-based explanations identified the relation between the drought event that took place in 2015 in 

Prairie, Canada with the El-Niño event which reduced the water availability [12]. An extension of  this work employed 

remote sensing data too, suggests that the satellite-based evaporative stress index, soil moisture and groundwater levels 

are effectual features for drought onset and intensification [13]. Countries and regions with advanced technologies and 

infrastructures like U.S. [14], Germany[15] and North America[16] have developed expert systems for drought monitoring 
in high temporal resolution. Similar systems are yet not developed for Cyprus and the rest of EMMENA region which is 

characterized as a climate change hotspot. Thus, there is an urgent need for systematic monitoring of such extreme events 

[17], [18]. However, there is a lack of data related to the drought severity in the EMMENA region. 

In this work, a tree-based explainable clustering methodology is proposed using data from US drought monitor system. 

This methodology can be helpful in predicting drought severity by using meteorological data in the EMMENA region to 

raise awareness. Clustering ML models are characterized as black box [19]. Therefore, various methodologies have been 

developed to add explainability on clustering algorithms like k-means through decision trees [20]. Such methodologies are 

proposing iterative techniques to extract high distinct clusters[21]. Similarly, those techniques are also applied in kernel 

clustering[20] and k-medians clustering [21].The proposed methodology uses k-means algorithm and SHAP-based XAI 

techniques applied in drought monitoring, and thus, can be effective in cases where the ground truth labels are missing 

and/or interpretability is necessary. The rest of the paper is structured as follows. Section 2 describes the proposed 

methodology and the dataset used in this study, Section 3 presents the experimental setup and the evaluation strategy used. 
Section 4 gives an overview of the experimental results regarding model’s performance and insights derived from the 

SHAP-based explanations. Finally, Section 5 concludes this work. 

MATERIALS AND METHODS 

2.1 Drought monitoring dataset 

For this study a Kaggle dataset (https://www.kaggle.com/datasets/cdminix/us-drought-meteorological-data/data, visited 

on 05/03/2024) is collected. The dataset contains meteorological variables acquired from the NASA Langley Research 

Centre POWER Project and annotated based on the drought scores from the US drought monitor system. The 

measurements are acquired for the period of January 2000 to January 2020. Furthermore, each sample in the dataset is 

matched with the observation’s date and the US county. Tables 1 and 2 describe all the different meteorological variables 
used and provide descriptive statistics for the dataset. Furthermore, Table 3 provides an overview of the various classes 

defined by the US drought monitor, which serve as the labels for this study. 

 

Table 1.  Description of each meteorological variable of the dataset. 

Variable Description Unit 

PRECTOT Precipitation mm/day 

PS Surface Pressure kPA 

Q2VM Specific Humidity at 2 Meters g/kg 

T2MDEW Dew/Frost Point at 2 Meters oC 

T2MWET Wet Bulb Temperature at 2 Meters oC 

T2M Temperature at 2 Meters oC 

T2M_MAX Maximum Temperature at 2 Meters oC 

T2M_MIN Minimum Temperature at 2 Meters oC 

T2M_RANGE Range of Temperature at 2 Meters oC 

TS Earth Skin Temperature oC 

WS10M Wind Speed at 10 Meters m/s 

WS10M_MAX Maximum Wind Speed at 10 Meters m/s 

WS10M_MIN Minimum Wind Speed at 10 Meters m/s 
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WS10M_RANGE Range of Wind Speed at 10 Meters m/s 

WS50M Wind Speed at 50 Meters m/s 

WS50M_MAX Maximum Wind Speed at 50 Meters m/s 

WS50M_MIN Minimum Wind Speed at 50 Meters m/s 

WS50M_RANGE Range of Wind Speed at 50 Meters m/s 

 

Table 2.  Basic descriptive statistics for all the meteorological data in which min, max, mean, and stdev 

represent the minimum, maximum, mean, and standard deviation values of the dataset. 

Variable min max mean stdev 

PRECTOT 0.000 21.440 1.764 3.702 

PS 80.140 103.270 96.931 4.717 

Q2VM 0.560 20.570 8.003 4.573 

T2MDEW -21.910 25.420 7.526 9.855 

T2MWET -20.920 25.420 7.567 9.783 

T2M -18.930 38.910 15.119 11.023 

T2M_MAX -15.03 46.15 21.590 11.735 

T2M_MIN -23.63 30.51 9.311 10.498 

T2M_RANGE 0.47 23.03 12.279 4.014 

TS -19.51 40.75 15.331 11.370 

WS10M 0.65 8.79 3.319 1.552 

WS10M_MAX 0.96 12.36 4.869 2.214 

WS10M_MIN 0.01 5.57 1.770 1.129 

WS10M_RANGE 0.39 8.6 3.099 1.640 

WS50M 1.09 11.37 5.203 1.971 

WS50M_MAX 1.69 14.79 7.435 2.375 

WS50M_MIN 0.02 8.63 2.856 1.863 

WS50M_RANGE 0.74 10.26 4.578 1.850 

 

Table 3.  Drought severity classes as defined by US Drought Monitor 

Drought Score Description 

Label in 

dataset 

ND No Drought 0 

D0 Abnormally Dry 1 

D1 Moderate Drought 2 

D2 Severe Drought 3 

D3 Extreme Drought 4 

D4 Exceptional Drought 5 
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1.2 Explaining clustering through decision trees 

The k-means [24] is an unsupervised machine learning algorithm able to discriminate samples (data points) into different 

clusters according to their similarities in the data space. The algorithm is always dependent on the value of k which is 

defined before the execution of the model. The k-means assigns each sample to the cluster with the nearest mean (cluster’s 

centroid). At the end, the data space is split into Voronoi triangles. 

For a set of observations (𝑥1, 𝑥2, … , 𝑥𝑛) where each observation represents a d-dimensional real vector, the algorithms aim 

to split the observations into k clusters (≤ 𝑛) denoted as 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘}, in order to minimize the intra-cluster variance 

using sum of squares as defined in equation 1: 

argmin 
𝑆

∑ ∑ ∥ 𝑥 − 𝜇𝑖 ∥2=
𝑥∈𝑆𝑖

𝑘

𝑖=1

argmin
𝑆

∑|𝑆𝑖|

𝑘

𝑖=1

          (1), 

where 𝜇𝑖 is the mean (cluster’s centroid) of points in 𝑆𝑖 and calculated with the equation (2): 

𝜇𝑖 =  
1

|𝑆𝑖|
∑ 𝑥
𝑥∈𝑆𝑖

    (2), 

where |𝑆𝑖 | is the size of 𝑆𝑖. 

After the execution of clustering and the evaluation of the agreement with the ground-truth classes, a decision tree is trained 

on all the samples. Decision trees are non-parametric supervised learning methods for classification and regression tasks. 

A tree is generated to predict the values of an output variable by exploring potential decision rules from the features. The 

trees are in general interpretable and explainable models. Thus, it eases the process of interpretation and explanation of 

clustering algorithms like k-means. 

Following the training of a decision tree model, SHAP-based explanations are applied. SHAP is an XAI methodology 

based on the cooperative game theory and consequently uses the Shapley values. Each feature is considered as a “player” 

and the Shapley value for each player deputize its contribution to the output value. Shapley values are calculated by 

equation 3: 

𝜑𝑖(𝑣) =  ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))

𝑆⊆𝑁{𝑖}

          (3), 

where N is the number of players (features), and v is the function which subsets the players and represents a characteristic 

function. The v means that if S is a set of players, the 𝑣(𝑆) is the total worth of coalition S and describes the expected sum 

of payoffs the coalition can obtain by cooperation. The n is the total number of players and i is the current player. 

EXPERIMENTAL SETUP 

The k-means algorithm is employed for clustering. A trial-and-error strategy is used to determine the number of maximum 

iterations until the algorithm reaches convergence. During the tuning, the algorithm is tested with 200,300, 400 and 500 

maximum iterations. According to the applied tuning, maximum iterations are set to 500. The number of clusters is set to 

6, according to the number of drought scores defined by U.S. Drought Monitor. The decision tree which is used for the 

explainability assessment is tuned as follows: gini criterion is selected, the best split is selected at each node, and the nodes 
are expanded until all leaves are pure. In contrast to the typical ML methodologies, in this study a train/validation/test split 

is not necessary. The objective of training a decision tree is to use its explainability to calculate the SHAP values and 

proceed with clusters’ exploration. Therefore, all the available data are used. 

 

3.1 Evaluation Metrics 

In this study, four distinct metrics are used to evaluate the accuracy of the proposed methodology in the subsection 2.2. 

The agreement between the ground-truth classes and the predicted clusters of the k-means algorithm is defined as accuracy. 

Furthermore, Silhouette score is calculated to understand the distinction between the different clusters. The first metric is 

the Rand Index (RI) (or Rand Score) as defined in equation 4 which quantifies the similarity between two data clusterings. 
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𝑅𝐼 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4), 

where  TP is the number of True Positive pairs (both points belong in the same cluster in predicted cluster and ground truth 

class), TN is the number of True Negative pairs (both points belong in different cluster in predicted cluster and ground 

truth class), FP is the number of False Positive pairs (both points belong in the same cluster in the predicted cluster and in 

different clusters in ground truth classification) and FN is the number of False Negative pairs (both points are in different 

predicted cluster but in the same ground truth class). 

The second metric is the adjusted rand index (ARI), defined in equation 5, which calculates the similarity between predicted 

clusters and ground truth classes for all the pairs in a certain dataset and counts the number of pairs that are correctly 

clustered or not.  

𝐴𝑅𝐼 =
𝑅𝐼 −  𝔼[𝑅𝐼]

max(𝑅𝐼) −  𝔼[𝑅𝐼]
 (5), 

where RI is as defined in equation 4, 𝔼[𝑅𝐼] is the expected RI and max (𝑅𝐼) is the maximum RI. 

Fowlkes-Mallows (FM) index computes the similarity between the two clusters by comparing the pairs of points and is 

defined in equation 6. 

𝐹𝑀 =  √
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∙

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6), 

where TP is the True Positive, FP is the False Positive, and FN is the False Negative. 

The final metric is the homogeneity score which asses if a cluster contains only data points from the ground truth classes. 

Homogeneity score is defined in equation 7. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = 1 −  
𝐻(𝐶|𝐾)

𝐻(𝐶)
 (7), 

where 𝐻(𝐶|𝐾) is the conditional entropy of the class distribution in the given cluster and 𝐻(𝐶) is the entropy of the class 

distribution. 

All the above metrics are taking a range from 0 to 1, where 0 indicates no similarity between clusters and ground truth 

classes and 1 indicates absolute similarity. Another metric used to determine the similarity of different data points in each 

cluster with the rest data points in the cluster, is the Silhouette which is defined by the equations 8 and 9. 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 (8), 

where 𝑠(𝑖) is the silhouette score of a single data point i, 𝑎(𝑖) is the average distance from the point to the other points in 

the same cluster, 𝑏(𝑖) is the minimum average distance from the point to points of a different cluster. 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =  
1

𝑛
∑ 𝑠(𝑖)

𝑛

𝑖=1
 (9), 

where Silhouette is the overall silhouette score of the clustering analysis and 𝑛 is the total number of data points. 
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Figure 1. Silhouette of clusters. X-axis represents the silhouette coefficient value while the y-axis represents each cluster. 
The red dashed line shows the overall silhouette score. 

EXPERIMENTAL RESULTS 

4.1 Model’s performance 

The metrics defined in equations 4-7 and 9 are used to evaluate the agreement between predicted clusters and ground truth 

classes. Table 1 gives the experimental results of the proposed model. According to the evaluation metrics, it can be 

observed that the clustering achieves a full agreement of the predicted clusters with the ground truth classes, i.e., RI = 1.0, 

ARI = 1.0, FM = 1.0 and Homogeneity = 1.0. On the other hand, Silhouette analysis achieves an average score of 0.19, 

which means that there are samples assigned to a specific cluster that are similar with samples in a different cluster. Figure 

1 shows the silhouette analysis’ results of the predicted clusters. All the clusters exceed the average silhouette score 

(showed with red dashed line) while at the same time all, but cluster “1”, there are data points who achieved a negative 

silhouette value which means that those data points are assigned to wrong cluster. 

In fact, a typical strategy before clustering is to determine the optimal number of clusters. There are different techniques 

like the nbclust [25], which provides the optimal number of clusters based on an exhaustive analysis of 30 different 

evaluation metrics. However, this strategy is not applicable for this study since the number of different drought states for 

each county are defined by US drought monitor system.  

Table 1.  Experimental results of the k-means algorithm 

RI ARI FM Homogeneity Silhouette 

1.0 1.0 1.0 1.0 0.19 
 

1.3 Explainability 

At each step of building a decision tree, the algorithm chooses the most informative feature to split the data. In this specific 

case this separation is measured by gini impurity [26]. At the end, the decision tree can estimate the contribution of each 

feature to decrease impurity. Figure 2 shows the score of each feature in terms of importance in impurity reduce. 
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Figure 2. Feature importance according to the Decision Tree. From left to right, is the most important to the least important 
feature. X-axis define each feature and y-axis represents their importance score. 

According to the feature importance, as estimated by the supervised algorithm, the range of air temperature (i.e., 

T2M_RANGE) at 2 meters and the precipitation (i.e., PRECTOT) are the most important features in discriminating the 

samples into the clusters. Conversely, the wind speed at 10 meters (i.e., WS10M_MIN) and the temperature of the wet 

bulb (i.e., T2MWET) are the least important features. From the importance scores, it can be observed that none of the 
features is highly important, but the difference of the most and least important in comparison with the rest of the features 

is noticeable. 

A negative Shapley (or SHAP) value for a specific feature means that is pushing the model towards the examined class 

whereas a positive a Shapley value means the opposite. The SHAP summary plots for the classes “No Drought” and 

“Exceptional Drought” are presented in Figures 3 and 4, respectively. Both plots present the contribution of each feature 

(y-axis) in model’s decisions according to the Shapley value (x-axis).  The majority of high surface pressure (i.e., PS) 

values have a positive Shapley value, which means that aids the model to classify the samples as “No Drought”. In contrast, 

high surface pressure values have a negative impact to the model for class “Exceptional Drought”. Furthermore, higher 

maximum temperature (i.e., T2M_MAX) values tend to push the model away from “No Drought” class whereas lower 

values of the same feature push the model towards this class. From Figures 4 and 5 it can be that higher recorded 

T2M_MAX are not leading the model to the class “Exceptional Drought” class. Low precipitation (i.e., PRECTOT) values 
show that are not sufficiently helping the model, while the majority have a negative Shapley value. In contrast, most of the 

low PRECTOT values have a positive contribution towards the “Exceptional Drought” class. Lower surface temperature 

(TS) values are leading the model to classify data points as “No Drought”, while they have a negative impact to the 

“Exceptional Drought” class. It is clear that higher temperature range (i.e., T2M_RANGE) drives the model towards the 

“Exceptional Drought” class, but it is questionable for the “No Drought” class. 
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Figure 3. SHAP summary plot for samples classified as “No drought”. X-axis defines the calculated Shapley value for 

each data point and y-axis defines the different features involved in the dataset. The colour differentiation distinct the 

feature value for each point (low values are blue and high values are red). 

Proc. of SPIE Vol. 13212  132121B-8



 

 
 

 

 

 

 

Figure 4. SHAP summary plot for samples classified as “Exceptional drought”. X-axis defines the calculated Shapley value 
for each data point and y-axis defines the different features involved in the dataset. The colour differentiation distinct the 
feature value for each point (low values are blue and high values are red). 

 

CONCLUSION 

In this work, a novel XAI strategy based on decision trees is used on the unsupervised learning algorithm k-means. It is 

observed that the k-means clustering algorithm with 500 iterations is in a full agreement with the ground truth classes of 

the dataset, while at the same time the silhouette evaluation metric suggests that the clusters are not distinct to each other. 

According to the SHAP-based XAI applied to the decision tree trained on clusters, the most effective predictive features 

are the maximum air temperatures at 2 meters, the range of air temperatures at 2 meters, the precipitation, the surface 

temperature, and the surface pressure. Based on XAI techniques, it is easier to understand the importance of these features 

in classifying extreme classes like “No Drought” and “Exceptional Drought”. A further examination on this work is going 

to be conducted with the incorporation of data related to soil variables. 
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