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ABSTRACT

The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated.
The presence of significant field fluctuations is shown to break down the evolution into a sequence ofpartially coherent
robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system
fluctuations. This process takes advantage ofthe observable expectation value being bilinear in the evolution operator
and its adjoint. The consequences ofthis inherent robustness bodes well for the future success ofclosed loop quantum
optimal control experiments.
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1. INTRODUCTION

Many optimal control calculations have been performed for manipulating quantum phenomena12 and a number of
successful closed loop optimal control experiments314 have also been carried out where the optimal fields were directly
identified in the laboratory using suitable learning control techniques1517. An early point of speculation was that even
modest field noise would effectively kill the successful achievement of quantum control in the strong field non-linear
regime, where the quantum system could act to amplify the field noise. The intriguing recent experiments operating in
this regime provide evidence that this speculation was incorrect. However, the detailed explanation for the enhanced
robustness has remained unclear.

Learning control simulations indicate that closed loop experiments should naturally gravitate towards control fields that
produce robustness with respect to the presence offield fluctuations1820. The recent laboratory demonstrations of non-
linear intense field controlled dissociation and rearrangement ofmolecules4'7, as well as the manipulation of high
harmonic generation5, are consistent with this suggestion. Explicitly seeking as an additional control
criterion can further enhance this stable behavior, and possibly even with little deterioration in the quality ofthe attained
objective. Although it is possible under some special circumstances that field fluctuations may be helpful21 ,the general
expectation is that field noise will diminish the degree of attainable control. Control field noise may also influence the
rate of convergence ofthe learning control experiments1 72Q This paper will consider the relationship between (a)

coherent quantum dynamics, (b) the presence offield fluctuations, (c) the nature ofdynamical robustness, and (d)
seeking robustness.

2. OPTIMAL CONTROL OF QUANTUM DYNAMICS

The quantum system has the Hamiltonian H0 =H0 — jt . (t), where H0 is the field-free Hamiltonian, i is the electric
dipole moment, and E(t) is the control field. The system initially is described by the density matrix p(O) and the

dynamics is given by

ih=[H,p]. (1)
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In the present analysis, the system evolution occurs free of any environmental interactions. Solving this equation gives

p(t) =U(t, O)p(O)Ut(t, 0), where the time evolution operator U(t, 0) satisfies ih -U= HU, U(O, 0) = I . An objective

operator 0 (taken as time-independent here) is specified such that the expectation value

(0(T)) = tl[p(O)Ut(T,O)OU(T,O)] (2)

at the target time T is the goal for controlled manipulation. The system is assumed to be controllable to an acceptable
degree22. it is natural to pose the objective as achieving the best (i.e., the optimal) result for (0(T)) . This view is

fundamental to quantum optimal control theory23, as well as for closed loop learning control in the laboratory317'19'20.
Here optimization may refer to maximization, minimization, or some other specified criteria, which is summarized as

Opt(O(T)) (3)
c(t)

where the control field is varied until the objective is met, as best as possible. Any single laboratory experiment would
operate with an electric field (t) =0t(t)+&(t) where &(t) is a random disturbance around the nominal optimal field

Eopt(t) in practice, a set of experiments would be performed to average over an ensemble ofnoise trajectories {&(t)}.

The influence ofthe field fluctuations can depend on the overall magnitude of E0pt(t) and the degree ofnonlinearity of

the control process. Optimal control calculations1820 and experiments314 indicate that there is significant robustness
even in the presence ofrather large amplitude field fluctuations. We assume that 68(t) is a random variable characterized
by a distribution function P(&(t)) , such that

.1 D{&(t)IP(&(t)) = i . (4)

Equation (2) shows that the initial density operator p(O) is transformed to the final objective expectation value (0(T))

under the simultaneous action of U(T,O) and Ut(T,O). This evolution occurs through a sequence of states

I£), i = 1,2, ...,n, where each quantum number £ may span many accessible values. These states will be identified in

Section 3 as those associated with high quantum evolution phase sensitivity to control field fluctuations. Each of the
states £ ) denotes an intermediate "stopping-off' point along the way to the objective. We may rigorously decompose
U(T(O)) as follows:

U(T, 0) = U(T, t e)(e u(t ,t_ )I )(t_1 I

I?'2)(e'2 u(t2,ti)I)( IU(ti,0). (5)

The symbol denotes a summation or integration over the intermediate state indices, as appropriate. On physical
grounds, it is suggestive to think in terms of a sequence of evolving events under the influence of the electric field E(t),
o � t broken into sub-intervals {Eo(t), 0 � t � t1} , {c1(t), t1 � t � t2} ,...,{En(t), tn � t such that the full field

is a continuous concatenation of the individual pieces e(t)= [eo(t),El(t),...,En(t)I taken in sequence.
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An expression for Ut(T, 0) analogous to U(T,O) in Eq. (5) maybe written, and their combination utilized to represent
the structure in Eq. (2):

(0(1)) = f— p(O)Ut(t1 i )( i 1Ut(t2, t1 )I?2)(2 I

£=l n

kn—iXn—i IUt(tn,tn_i IUt(T,tnOIU(T,tn)Ir) (6)

x (e U(t,t_1 )k'fl—i)('fl—i I I 2)(2 IU(t2,ti)Itl)(el IU(ti,0 —3.

The arrows at the beginning and end of the expression imply that these operators are linked together to form a closed

loop structure. Figure 1 depicts the sequence of steps from p(O) to (0(T)) without field noise, permitting coherent

transfer of amplitude through each intermediate state. Each matrix element in Eq. (6) may be written in terms of its
modulus and phase

K£"ci U(tq , tq_l: ) = tq U(tq , tq_1: ) exp[i4(tq , tq—l)] , (7)

such that Eq. (6) becomes:

(O(T))=
e=i n

x

: (8)

x Ke, U(t, tn_i £ n—i ) (' U(t ,t_:£n_i)exp{i[(tn , ?'n_1) n'£n—l )]}

( ut(T,tnOU(T,tn)ie'n).

An arbitrary term in Eq. (8),

sq,q_i
= (lq Lktq tq_i £q_i ) (?'q U(tq, tq_i £'l_l )exp{i[(tq, £q_i )kq £q_i )1} (9)

is a functional of the electric field Eq_l(t) tq_i � t � tq. In Eq. (8), it is understood that each phase ,,£

p = 2,.. .,n will generally be a distinct functional of the electric field

In the laboratory learning control experiments, the final result is an ensemble average of Eq. (8) over the probability
distribution function in Eq. (4)

(O(T)){E} S D[&(t)]P(&(t))(O(T)). (10)

230     Proc. of SPIE Vol. 5115



Ideal case: Noise free fields

p(O)

Figure 1. A schematic depicting the transformation from the initial density operator p(O) to the final expectation value (0(T)) through

a series of dynamical states £ and £'i), i =1 acting as stopping-off points on the excursion. In this case, the dynamics are

noise-free with complete transfer of phase across each intermediate state depicted by the independent flow of amplitude for U and Ut.
The many possible states are shown in the boxes.

The field fluctuations from one interval to the next are assumed to be statistically independent of each other, such that

P(ö€(t)) flPq(&q(t)). (11)

Amplitude is carried
along multiple pathways

u(T,o)

Ut(T,O)
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This factorized form implies that the noise fluctuations have a memory shorter than the time intervals tq tq_1 for each

ofthe physical evolution steps. The presence ofcorrelated noise over extended time periods would change this
assumption, and a careful analysis of laser pulse noise is necessary for a more elaborate analysis. Proceeding with the
present assumption, combining Eqs. (8), (1 0), and (I 1) shows that each of the terms is a separate average over an
ensemble ofnoise trajectories. A typical term in Eq. (9) becomes an average:

KSq,q_1){61} = S D[&q_i(t) Pq_i(6Eq_i(t)) Sq,q_i([&q_i(t)I). (12)

The most sensitive functional dependence on the field fluctuations in Eq. (9) is assumed to arise in the phase factors,
rather than the moduli. A stationary phase analysis can be performed sequentially on all ofthe terms in Eq. (8). This
will lead to the form

(O(T)){6} 2: k?1 U(t1 ,O)p(O)Ut(t1,O)1t?l )
e1,i=i

xK1 U(t1,t2)2)2 (n-1 U(tn_i,tn)In)2 (13)

x

Comparison ofthe structure in Eq. (13) with that in Eq. (8) shows that the process ofseeking optimally controlled
system performance in the presence of field noise has broken the evolution p(O ) —>

(O(T)){6}
into a sequence of steps,

as shown in Figure 2. Coherence is fully maintained within each step (e.g., (l IU(ti,t2)k2)12), but is broken in going

from one step to the next. An important point is that Eq. (1 3) represents an extreme limit where phase transmission
across each stationary phase point is fully blocked. In practice, differing degrees ofphase transmittal across at these
points can occur.

When operating with intense fields, a tradeoffwill likely exist. Control with intense fields has attractive features (e.g.,
the lifting ofconstraining resonant conditions), but significant field fluctuations can have a deleterious effect on the
control process. The graduated influence of field noise evident in the analysis above should allow for a balance of good
quality control while still assuring an acceptable level ofrobustness to field noise.

3. DISCUSSION

A basic premise is that the best control results will maximally utilize constructive and destructive (CID) interferences to
discriminate amongst the desired and undesired product channels24. Equation (13) strictly applies to the case ofthere at
least being a single intermediate stop-offpoint, n � I, on the path p(O) =(o) . In the laboratory, there will always be a

finite amount of field noise, thereby likely corresponding to the presence of one or more intermediate stopping-off points
on the control pathway, as shown in Figure 2. Each ofthese points breaks the C/D interference process into sub-pieces,
likely resulting in less than full control. The search for optimality will attempt to drive up the degree ofC/D interference
manipulation, while assuring that the control results are as robust as possible to field noise. Partial transmission of phase
information across the stop-off points can occur, which will be beneficial to C/D interference. The stable structure of
Eq. (13) suggests that reasonable levels of field noise, even at high field intensities, may not result in a catastrophic loss
of control. Perhaps the best evidence for this behavior is the success of the recent high field quantum control
experiments involving molecular dissociation and rearrangement7, as well as selective high harmonic generation5.
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max can lead to stationary phase linkages
E(t)

Partial retention
of transmitted
phase

Figure 2. The structure arising along the path p(O) —p (O(T)){} due to seeking optimal quantum system performance in the

presence of control field noise. In spite of noise being present, the optimization process seeks to retain a maximum degree of control
through manipulation of constructive/destructive interferences. The result is a reduction of the structure in Figure 1 down to a

sequence of steps shown here and explicitly expressed in Eq. (13). Within each step (e.g., e1 — £2), full quantum evolutionary
coherence is retained while the process is broken in going from one step to the next (e.g., £1 — £2 and then £2 — e3). The
interference retained within a step is depicted by the complex interleaving paths. The nature of the ? ') states, their total number n,

and their location along the excursion, is dictated by the ensemble of noise trajectories {&(t)} associated with the control field. The

bilinear nature of (0(T)), in terms of U and is the origin of the inherent robustness in the evolution, expressed as a set of

intermediate coherent steps towards the target (0(T)), rather than a total loss of control due to field noise. The resultant loss of phase

transmitted, either total or partial, is indicated in the boxes shown the corresponding coupled or partially decoupled amplitudes.

Loss of
transmitted phase
at the linkages
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One limiting class of experiments will be those carried out without any benefit of optimal field training to meet the
objectives. The expectation is that this circumstance will utilize little, if any, beneficial C/D interferences, but perhaps
exhibit a good degree ofrobustness to field noise. This regime should correspond to employing a maximum number of
intermediate stop-offpoints in Eq. (13), producing a ladder of stepwise transitions to the final outcome.

Consider now the number of steps n on the way to the target in Eq. (1 3), as well as their location in time andquantum
number space {tq , £ q} . The sequence of points {tq ,£q} are those locations where there is high quantum evolution

phase sensitivity to field fluctuations. In order to optimally achieve the control objective with good robustness, the

quantum evolution phase sensitivity is diminished at {tq, £q} , by cancellation ofthe pairs ofphases at the analogous

points along the evolution of U(T,O) and Ut(T,O). Increasing noise levels should lead to more such intermediate phase

sensitive points {tq, £q} , with the limit ultimately reducing the dynamics to a sequence ofincoherently coupled steps.
Such a chain of simple steps is still quantum mechanical, as governed by the system selection rules. The physical nature
ofthe intermediate states ?q), q = 1, 2, ...,n is dictated by the optimal control process seeking the best system

performance. These intermediate states might be members ofthe eigenstates of l-Ij or superpositions ofthem to form

virtual states. The guidance is strictly driven by seeking optimality.

4. CONCLUSION

This paper argued that a relationship exists between (a) the nature of quantum dynamics being bilinear in U and U ,(b)
the presence offield fluctuations, (c) the attainment ofoptimality, and (d) the robustness ofthe control process.
Although noise is expected to generally have a deleterious effect on achieving control, especially in the non-perturbative
regime, the analysis showed that good control selectivity may still remain, with the power of optimality fighting to
achieve the best results possible25. To push this analysis further, it would be very desirable to carefully assess the nature
of shaped laser pulse noise.

In many applications, even a modest degree of stable control would be quite acceptable. A notable exception may arise
in quantum information science26, where the highest quality control is sought. Regardless of the application, seeking
optimality should provide the best operational performance, including robustness. The analysis in this paper bodes well
for the future success of control over quantum phenomena, including in the strong field regime.
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