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ABSTRACT

Mesoscopic shot noise is not only probabilistic: it has features which reflect quantum mechanical entanglement.
We discuss recent proposals of orbital entanglement generation and detection in mesoscopic coherent conductors.
Orbital entanglement avoids the difficulty of detecting spin and leads to simpler structures. Orbital entanglement
schemes invoke two two-particle sources. The index of the source plays the role of a pseudo-spin. The rotation of
qubits can be implemented with beam-splitters or even just quantum point contacts. Entanglement is detected
via violation of a Bell inequality. The necessary correlations can be extracted from shot noise measurements.
Possible two particle sources are Cooper pairs emitted from superconductors or even simpler electron-hole pairs
generated at tunnel contacts or generated dynamically with the help of oscillating potentials.
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1. INTRODUCTION

For the last two decades the investigation of shot noise in small electrical conductors has been an important
frontier in mesoscopic conductors.1 Shot noise has been a tool to investigate properties of electrical conductors
which are not accessible through conductance measurements.

Shot noise, investigated by Schottky,2 almost a hundred years ago, is due to thermionic emission from the
high-energy Boltzmann-like tail3 of the Fermi distribution. Schottky’s noise is classical, with a noise power
proportional to the average current,

〈(∆I)2〉ν = 2e|〈I〉| (1)

In contrast, shot noise in mesoscopic conductors is a quantum mechanical phenomenon, a manifestation of the
wave-particle duality. An electron incident on a scatterer can be either reflected or transmitted. The final state,
however, is in both cases a carrier with a quantized charge, an electron. One the one hand, due to the probabilistic
nature of quantum mechanical scattering, the same initial state (the electron approaching the barrier) can have
several final states (reflection with amplitude r or transmission with amplitude t). This gives rise to a quantum
partition noise4–6 proportional to T (1 − T ) where T = |t|2 is the transmission probability. Since the average
current will be proportional to transmission, one sees immediately that the quantum partition noise will be
smaller than the Poisson result given by Eq. (1).

In this work we are interested in entangled states. In the simplest case of two composite systems, these
are states which can not be written as a product of the wave functions of the two systems.7–9 Best known
are spin entangled states. Here our interest is in the entanglement of a different type. We consider orbital
entanglement10, 11 which is generated if two or more contacts inject carriers into a conductor. In such a situation,
we can not distinguish which electron has been injected where.12 The shot noise correlations exhibit exchange
interference terms.12, 13 In orbital entanglement the index of two injecting contacts plays the role of a pseudo-spin
index.11

We focus on orbital entanglement since it seems much simpler to manipulate and detect than spin entangle-
ment. Spins provide a natural qubit, and have been the focus of much of the recent efforts. We mention here only
a few recent works which can serve as a guide to the literature.14–17 The direct detection of spin entanglement
requires a spin to charge conversion measurement. This is difficult since the detector needs to be capable to test
spin polarization in an arbitrary direction. Alternatively, if the detector has a fixed polarization axis, spin needs
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Figure 1. Two-probe conductor: incident states âL, âR generate outgoing states b̂L, b̂R.

to be rotated before it impinges on a detector. In contrast, orbital entanglement can be detected with the help of
beam splitters or even simply with the help of quantum point contacts. We emphasize and insist on considering
not only the entanglement generation but also its detection, not only out of a desire for a complete description,
but more fundamentally since in quantum mechanics the measurement process must be an integrated part in
predictions of what can be observed.

2. CONDUCTANCE AND SHOT NOISE: TWO TERMINAL CONDUCTOR

We briefly restate some central results of the scattering theory of conductance and noise. This will help us to
clarify the distinction between simple quantum partition noise and the information on entanglement in shot noise
correlations.

A two-terminal conductor is shown in Fig. 1. Current amplitudes âL and âR describe waves incident from
the left L and right R. Current amplitudes b̂L and b̂R describe amplitudes of out-going states. In general there
are many channels (transverse modes) and â and b̂ are vectors with as many components as there are transverse
channels at the Fermi energy. Incoming and out-going states are related by the scattering matrix, sRL ≡ t,
sLR ≡ t′, sLL ≡ r, and sRR ≡ r′. At zero temperature the conductance is

G =
e2

h
Tr(t†t) =

e2

h

∑

n

Tn (2)

Here the trace Tr is over all transverse modes. The matrix t†t is hermitian and can be diagonalized. Its
eigenvalues are the transmission probabilities Tn. Note, that independent of the basis, the conductance is always
expressed as a sum of transmission probabilities.

The shot-noise power is6

S = 2e
e2

h
|eV |Tr(r†rt†t) = 2e

e2

h
|eV |

∑

n

Tn(1 − Tn) (3)

At least in the eigen-channel basis, the shot noise is again only a function of transmission probabilities. In
contrast, in multi-terminal conductors, shot noise can not be expressed in terms of single particle transmission
probabilities, scattering-phases will appear in an explicite manner.

3. CONDUCTANCE AND SHOT NOISE: MULTI-TERMINAL CONDUCTOR

A multi-probe conductor is shown in Fig. 2. The scattering matrix of the conductor is composed of the
matrices sαβ which describe the transmission/reflection amplitudes of carriers incident in contact β and trans-
mitted/reflected into contact α. At zero temperature, the conductance matrix is,

Gαα =
dIα

dVα
=

e2

h
Tr(Nα − s†ααsαα) , Gαβ =

dIα

dVβ
= −e2

h
Tr(s†αβsαβ) , (4)
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Figure 2. Multi-probe conductor and its scattering matrix.

where Nα is the number of quantum channels in contact α. We are interested in correlations of fluctuating
currents with currents measured at different contacts α �= β,

Sαβ = 2
∫

dt〈∆Îα(t)∆Îβ(0)〉 (5)

In the zero-temperature limit, we find,6, 12

Sαβ = 2
e2

h

∫
dETr

[
B†

αβBβα

]
, Bαβ =

M∑

γ=1

sαγs†βγ(fγ − f0) (6)

Here fγ is the Fermi distribution function of a contact at voltage Vγ and f0 is the Fermi function of a contact
that is grounded. Now if there is only one contact above ground M = 1 the correlation function still depends
only on the scattering matrix multiplied with its hermitian conjugate, similar to the shot noise in a two-terminal
conductor. But if M ≥ 2 the correlation function contains now products of four scattering matrices in which
none of the scattering matrices is the hermitian conjugate of the other. This implies that the correlation function
depends on phases of the scattering matrix elements. The appearance of phases of scattering matrix elements,
discussed already in Refs. 12, 13, is now central for what follows. We will show that such phases are connected to
the fact that shot noise is a probe of two-particles processes. To illustrate this, we demonstrate first a novel type
of Aharonov-Bohm effect,12, 13, 18–20 which exists only due to two particle scattering processes. These phases
are a manifestation of quantum non-locality and subsequently we link them to orbital entanglement.

4. TWO-PARTICLE AHARONOV-BOHM EFFECT

To high-light the role of phases of scattering matrix elements we search for a geometry in which the single-particle
Aharonov-Bohm effect is absent and only the two-particle Aharonov-Bohm exists. This implies that none of the
conductance matrix elements of such a multi-probe conductor depends on the Aharonov-Bohm flux, but shot
noise correlations are oscillatory functions of flux. In optics, geometries in which time averaged intensities are
feature-less but correlation functions exhibit an interference pattern have long been known. Such geometries are
known as intensity interferometers,21, 22 in contrast to the better known amplitude interferometers, like the Mach-
Zehnder or Michelson interferometer. The prime example is the stellar Hanbury Brown Twiss interferometer
which was used to measure the angular diameter of stars. In fact the Hanbury Brown Twiss experiments set the
stage for the development of quantum optics. A table top version of an optical intensity interferometer22 is shown
in Fig. 3. Photons are injected from 2 and 3. Contacts 5, 6 and 7, 8 are used to measure intensity correlations.
The broken lines represent half-silvered mirrors. Each photon-path is singly connected, there are no single
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Figure 3. Left: Optical intensity interferometer: broken lines represent half-silvered mirrors. Photons incident from 2
and 3 end up in 5, 6, 7, 8. There are no closed path and thus no single photon interference effects. Right: Electrical
intensity interferometer: A Corbino disk with four quantum point contacts. Electrons incident from 2 or 3 end in contacts
5, 6, 7, 8. There are no closed path and thus no single electron-interference effects. An Aharonov-Bohm flux penetrates
the hole of the disk. After Ref. 18.

particle interfering alternatives. The time-averaged intensities are not sensitive to the phases φi accumulated in
the traversal from one mirror to the other. However, the intensity correlations do depend on these phases. A
topologically equivalent conductor,18 is shown in Fig. 3. It is a Corbino disk23 with four contacts on the outer
perimeter and four contacts on the inner perimeter (not all these contacts are necessary for the demonstration of
the two-particle Aharonov-Bohm effect). The role of mirrors is played by quantum point contacts (QPC) with
transmission and reflection probabilities Ti and Ri, i = A, B, C, D. The arrows along the sample boundaries are
the edge states of a two-dimensional electron gas in the ν = 1 integral quantum Hall state. An Aharonov-Bohm
flux penetrates the hole of the Corbino disk. Along a path, say along the outer edge from C to A electrons
accumulate a kinetic phase φ1 and due to the AB-flux a phase χ1. We have χ1 + χ3 − χ2 − χ4 = 2πΦ/Φ0

where Φ0 = h/e is the single electron flux quantum. The scattering matrix elements of this conductor contain
phases only in the form of a simple multiplicative phase factor. For instance the scattering matrix element for
transmission from contact 2 to 5 is,

s52 = T
1/2
A ei(φ1+χ1)T

1/2
C . (7)

The conductance from contact 2 to 5 is G52 = dI5/dV2 = − e2

h TATC . All other elements of the conductance
matrix are similarly independent of the AB-flux.

However, if we now evaluate the cross-correlations of currents, the noise-spectra do depend on flux. According
to Eq. (3) we have to evaluate

S58 = −2
e2

h

∫
dE|s∗52s82 + s∗53s83|2(f − f0)2 (8)

to find the current-cross correlation between contacts 5 and 8. For example for TA = TB = TC = TD = 1/2 we
find,18

S58 = − e2

4h
|eV |

[
1 + cos

(
φ1 + φ2 − φ3 − φ4 + 2π

Φ
Φ0

)]
(9)

which exhibits a simple oscillation due to the AB-flux.

The flux dependence in the current cross-correlation is a consequence of the fact that the correlation probes
two-particle processes.18 Specifically in our interferometer, the contribution to the correlation come from
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Figure 4. Schematics of the orbital entangler arrangement: two two-particle sources (circles emit particles towards
detectors A and B which rotate the qubit with phase angles φa and φb.

processes in which a particle is emitted from contact 2 towards 5 and from contact 3 towards 8. This process is
indistinguishable from the emission of a particle from 2 towards 8 and from 3 towards 5. The amplitudes of these
two two-particle processes have to be added. But the two two-particle processes now do encircle the AB-flux!!

5. ORBITAL ENTANGLEMENT

We now discuss an orbital entanglement scheme and subsequently return to the electron intensity interferometer.
Figure 4 demonstrates schematically the principle of an orbital entangler. There are two sources (red circles in
Fig. 4 ) denoted U (up) and D (down) which emit two particles, one to A and one to B. The two particles emitted
by a source do not necessarily have to be identical. But it is important that both sources emit the same type of
particle to the left side and same the type of particles to the right. In our initial work we used a superconductor
as a two particle source.11 Later Beenakker et al.24, 25 pointed to sources which emit electrons-hole pairs. The
two particle wave function generated by these two sources is of the form

Ψ =
1√
2

[ΨU (A)ΨU (B) + ΨD(A)ΨD(B)] (10)

and describes a state that is entangled with respect to the source indices U and D. The spatial separation of
the two two-particle sources is only desirable for enhanced control but it is not a fundamental requirement. To
analyze the state, we send it onto analyzers A and B which can rotate the state through an angle φa and φb.
One reason that orbital entanglement schemes are simpler than spin entanglement is due to the fact that simple
beam-splitters rotate orbitally entangled states.

Theoretically we can verify that a state is entangled by constructing it and by evaluating an entanglement
measure. Experimentally, we can not (typically) directly investigate the state but must rely on other criteria
to find out whether we have an entangled state or not. An inequality developed by Bell9, 26 can serve this
purpose. Originally developed to separate quantum mechanical non-locality from classical local states, here, the
purpose is not to test fundamental aspects of quantum mechanics but simply to use the inequality as a test for
entanglement.11, 27–29 It is not the only possible criteria but the Bell correlations which enter the inequality are
closely related to intensity correlations. We will now show that the electron intensity interferometer18 in fact
contains already all these elements. A Bell test26 is based on the ”equal-time” correlations

E(θA, θB) =
〈(IA+ − IA−)(IB+ − IB−)〉
〈(IA+ + IA−)(IB+ + IB−)〉 (11)

where Iiσ are intensities (currents) at contacts iσ, i = A, B, σ = ±. A classical system has

SB = |E(θA, θB) − E(θ′A, θB) + E(θA, θ′B) + E(θ′A, θ′B)| ≤ 2 (12)

On the other hand, if there exist angles θA, θB, θ′A, θ′B such that SB exceeds 2 we know the state is entangled.

6. ELECTRON-HOLE ENTANGLEMENT IN LOW FLUX LIMIT

We now return to the intensity interferometer of Fig. (2) to discuss its non-local properties. We first consider the
limit of a very asymmetric (tunnel limit) interferometer. We take the reflection probability RC at C for carriers
incident from 2 and the transmission probability TD for carriers incident form 3 to small, RC = TD = R � 1.
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Figure 5. Electron-hole pairs in the intensity electron interferometer: quantum point contact C weakly reflects electrons,
contact D weakly transmits electrons. Each reflection event at C and each transmission event at D leaves behind a hole.
After Ref. 18.

As a consequence electrons incident from 2 are very rarely reflected towards B and the missing electrons on
the left side of QPC C can be viewed as a hole (see Fig. 5). Similarly electrons from 3 are only very rarely
transmitted and through QPC D and the missing electron in the reflected stream can again be viewed as a hole.
Thus each reflection event at C and each transmission event at D creates an electron-hole pair. This is similar to
the proposal of Beenakker et al.24 except that here the two sources are spatially separated and thus individually
controllable. On the left side of our interferometer excitations are holes in a ground state with Fermi energy
µ = eV and excitations on the right side are electrons in a ground state with Fermi energy 0. (We take the
equilibrium Fermi energy to be at E = 0). The incident state is a many particle electron state with energies in
the range 0 < E < eV ,

|Ψin〉 =
∏

0<E<eV

c†2(E)c†3(E)|0〉 (13)

We next introduce creation (and annihilation) operators in the out-going regions of the QPC’s C and D,

c†2 = tCc†2A + rCc†2B ; c†3 = rDc†3A + tDc†3B (14)

In terms of these operators we obtain for the out-going state to lowest order in the reflection probability,18

|Ψ〉 = |0̄〉 +
√

R

∫ eV

0

dE
[
c†3Bc3A − c†2Bc2A

]
|0̄〉 (15)

This is an orbitally entangled electron-hole state. It is important that here |0̄〉 is the equilibrium state mentioned
above with the voltage drop eV across the QPC’s C and D incorporated. It is the introduction of this tunneling
ground state18 which permits to describe the excitations as electron-hole pairs.

7. ENTANGLEMENT TEST

We now demonstrate that the state Eq. (15) violates the Bell inequality. As above we consider the tunnel limit
and set φ1 + φ2 − φ3 − φ4 + 2πΦ/Φ0 = 2π. In the orbital entangler set-up the two detector QPC’s A and B
”‘rotate” the qubit. The scattering matrices of these two QPC’s are

SA/B =
(

cos θA/B − sin θA/B

sin θA/B cos θA/B

)
(16)
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which introduces the angles needed in the Bell test. With these specifications we find for the shot noise current
correlations

S58 = S67 = −S0P++ ; S57 = S68 = −S0P+− (17)

where S0 = −(4e2/h)|eV |R, and
Pσ,σ′ = (1 + σσ′ cos[2(θA − θB)])/4 (18)

with σ = ±, σ′ = ±. Here P has just the form that one would expect in a Bell test of a spin entangled state. Eq.
(18) permits to obtain the Bell correlation, E(θA, θB) = P+++P−−−P+−−P−+. Note, that the Bell test requires
an equal-time correlation, whereas the quantity that is presently accessible in a shot noise measurements is the
zero-frequency noise. However, in the low flux limit considered here, the cross-correlation is just an equal time
measurement run over a long time.11 Only co-incident current pulses will contribute to the correlation. Such
correlated current pulses must necessarily come from the electron-hole pair that was generated in a correlated
event. Subsequent pairs are generated with a typical time interval τ ∼ h̄/eV R (remember R << 1) which is
long compared to a correlation time of an electron-hole pair τ ∼ h̄/eV .

Alternatively we can calculate the joint detection probability Eq. (18) directly using the state Eq. (14). The
tunnel limit represents thus a very transparent situation. Since the electron-hole pairs are well separated in time,
there is in this limit also the possibility to dynamically manipulate the entangled state during its transfer to the
detector. Therefore, the entanglement we have in the tunnel limit is likely ”‘useful”.

We remark that if dephasing11, 30, 31 is introduced in our intensity interferometer, through reduction of
the off-diagonal elements of the density matrix30 in the qubit space, the Bell parameter becomes Smax

B =
2
√

1 + γ2 cos2 φ0. Here γ is the dephasing parameter that multiplies the off-diagonal density matrix elements,
0 < γ < 1. Importantly the Bell inequality can be violated independent of the degree of (this type32) of de-
phasing. Returning to the two particle AB-effect we find that γ determines the visibility of the two-particle
AB-effect. This again demonstrates the close link between the two-particle AB-effect and entanglement in our
intensity interferometer.

8. ELECTRON-ELECTRON ENTANGLEMENT

The two-particle Aharonov-Bohm effect exists not only in the tunnel limit but in fact for arbitrary settings of
transmission probabilities in the intensity interferometer.18 For ”large” transmission probabilities TC ≈ TD ≈
1/2 the electron-hole picture is, however, not any longer useful. We return to an electron picture only. The full
many electron state is a product state. Elastic scattering performs only a linear transformation on the state
and does thus not change this fact. However, the statement that the full state is a product state and thus not
entangled is entirely irrelevant.24 What counts is the state in two regions A and B and not the full state.
Indeed, we find that also in the highly transparent interferometer a Bell inequality can be violated. The essential
point is that we probe in this limit only two particle properties of the state. We have termed this entanglement
through “post selection”. To treat the case of a (nearly) symmetric intensity interferometer we start from the
Glauber joint detection probability, and find18

Pαβ ∝ 〈b†β(t)b†α(t)bα(t)bβ(t)〉 = (h2/e2)[(1/2τc)Sαβ + IαIβ ] (19)

where τC = h̄/eV and Iα, Iβ are average currents. Using the scattering matrix for the average currents permits
to write

〈b†β(t)b†α(t)bα(t)bβ(t)〉 = (eV )2|sα3sβ2 − sα2sβ3|2 (20)

Apart from the factor (eV )2, the right hand side is just the two-particle transmission probability for two electrons
injected simultaneously at contacts 2 and 3. For the maximum Bell parameter we find

Smax
B = 2

√
1 + cos2 φ0 (21)

where φ0 = φ1 +φ2 −φ3 −φ4 +2πΦ/Φ0. Clearly the maximal Bell parameter exceeds 2, signaling entanglement.
The origin of this two-electron entanglement can be understood as follows: The anti-bunching of electrons implies
that no two electrons can be emitted simultaneously from a single reservoir. As a consequence, only the process
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where one electron is emitted from the source C and one from D can lead to a joint detection in A and B. Since
the paths of these two particles can not be distinguished, the corresponding state is orbitally entangled.

For the symmetric interferometer, electron-electron entanglement appears only on the short time scale τC =
h̄/eV . To make use of the entanglement of this state is thus likely more difficult and might make this a ”less
useful” entanglement.

We conclude with a remark on related work on Bell inequalities in mesoscopic conductors. Chtchelkatchev
et al.,28 Faoro et al.33 and Lebedev et al.29 formulate Bell inequalities in mesoscopic conductors in terms of the
charge transfered Qα(t, τm) =

∫ τm

0 dtIα(t) during a certain measurement time τm. In the tunneling limit,28, 29

with a proper choice of measurement time, the resulting Bell inequality is independent of this time. However,
in the high flux limit, the Bell inequality depends on the measurement time. The same dependence on the
measurement time was found for Bell inequalities formulated directly in terms of current correlators.29 While it
is possible to pump charges one by one, counting charges similar to counting photons with a detector, is thus
far not possible. For quasi-particles the equal-time information (equal on the scale of the correlation time τC) is
related to long-time measurements in a simple way, as exemplified by Eqs. (19,20).

9. DYNAMIC GENERATION OF QUASI-PARTICLE ENTANGLEMENT

The orbital entanglers which we have presented thus far are stochastic. The emission of pairs of particles (in
the electron-hole limit) is Poissonian. It is clearly desirable to find ways to generate entangled states in a more
controlled way. In classical machines, computation is a time-dependent process with elementary steps often
controlled by a master-clock.34 Idealy it should be possible to use the signal from the master-clock to produce
entanglement on command, once per clock-cycle.

As a first step towards time-controlled quasiparticle entanglement, two of us,35 have analyzed a dynamic
scheme to generate and detection of orbitally entangled electron-hole pairs in a mesoscopic conductor. Pairs are
generated by electrical potentials that are varied periodically and adiabatically at two spatially separated regions
in the conductor . A possible dynamic intensity interferometer is shown in Fig. 6. The oscillating potential
excites electron-hole pairs, for instance through the modulation of the voltages at two gates which span the
conduction channel. Alternatively two quantum point contacts can be used and the voltage to one of the gates
creating the contact can be modulated. To guide the electron-hole pairs away from the region underneath the
gates we again consider a two-dimensional electron gas in the integer quantum Hall state ν = 1. The scheme
follows the general prescription given in Sect. V. The generated electron-hole pairs are orbitally entangled with
respect to the two regions of emission. The emitted quasi-particles are detected in electronic reservoirs, all kept
at zero bias, connected to the conductor.

This structure is even easier to fabricate than the stochastic orbital entangler shown in 3. Only two interior
contacts are needed. Our scheme bears some resemblance to quantum pumping36–39 but due to the chiral nature
of the geometry no net electrical current per clock-cycle is generated. Instead the excited quasi-particles give rise
to electrical current noise. Shot noise in the absence of dc-current has recently been measured in an experiment
which excites electron-hole pairs with the help of an oscillating contact potential.40

In our work35 we have focused on the adiabatic limit. In this limit the oscillation period τ = 2π/ω is long
not only compared to the transmission and reflection times of carriers underneath the gate but also compared
to the propagation time of carriers from the gates to the detector contacts. In this limit the amplitudes for
scattering between the reservoirs 1 to 4 are independent on energy on the scale of the clock frequency ω. The
temperature is taken much smaller than h̄ω. Due to the oscillating potentials at C and D, electrons incident
from the reservoirs 1 to 4 can absorb or emit one or several quantas of energy h̄ω before propagating out to the
reservoirs again.34 In this Floquet picture,37, 38 the scattering in both energy and real space can be described
by scattering matrices

SC/D(En, E) =

(
rC/D(En, E) t′C/D(En, E)
tC/D(En, E) r′C/D(En, E)

)
(22)

where e.g. tC(En, E) is the amplitude for an electron incoming at energy E from left towards C to be transmitted
to the right at energy En = E + nh̄ω. The dependence of the scattering amplitudes on VC/D(t) is determined
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Figure 6. Dynamic entanglement generation: Intensity geometry in the quantum Hall regime. Transport takes place
along a single edge state (thick black line) in the direction shown by the arrows. The potentials VC(t) and VD(t) at C
and D are adiabatically and periodically modulated in time, creating electron-hole pairs propagating towards reservoirs
1 to 4. The static point contacts at A and B work as controllable beam-splitters. After 35.

by the properties of the scattering potential in the regions C and D. Here we only work with the scattering
amplitudes themselves to keep maximum generality.

We also focus on the limit of weakly oscillating potentials, VC/D(t) = VC/D + δVC/D cos(ωt + φC/D), with
δVC/D so small that only the amplitudes to absorb or emit one quanta (proportional to δVC/D) need to be taken
into account. The relevant scattering amplitudes are then e.g. tD ≡ tD(E, E) and δt±D = δtDexp(±iφD) ≡
tD(E±1, E), with δtD = δVD(∂tD/∂VD)/2, and similar for the other amplitudes. In this low frequency, low
amplitude regime we are able to carry out the entire program: the calculation of the orbitally entangled quantum
states and the detection via violation of a Bell inequality from shot noise correlation spectra.

The state of the particles emitted from the two regions C and D can be constructed from the many-body
state of the electrons incident from the reservoirs 1 to 4, (suppressing spin) |Ψin〉 =

∏4
j=1

∏
E a†

j(E)|0〉, where
|0〉 is the true vacuum and a†

j creates an electron at energy E, incident from reservoir j. Introducing operators,
b†AC(E) creating an outgoing electron at energy E at contact C propagating towards contact A, we can relate
the b-operators to the a-operators at C as

(
bAC(E)
bBC(E)

)
=

∑

n=0,±1

SC(E, En)
(

a2(En)
a4(En)

)
(23)

and similarly at D. Inserting these relations into |Ψin〉 and expanding to first order δVC/D, we find the state
outgoing from C and D in terms of the b-operators as

|Ψout〉 = |0̄〉 +
∫ 0

−h̄ω

dE
(|ΨC

out(E)〉 + |ΨD
out(E)〉) (24)

with
|ΨC

out(E)〉 =
∑

α,β=A,B

fC
αβb†αC(E1)bβC(E)|0̄〉 (25)

where fC
AA = δr+

Cr∗C + δt′+C t′∗C , fC
BB = δt+Ct∗C + δr′+C r′∗C , fC

AB = δr+
C t∗C + δt′+C r′∗C , fC

BA = δt+Cr∗C + δr′+C t′∗C =
−e−2iφC (fC

AB)∗ and |ΨD
out〉 = |ΨC

out〉 with C → D. The ground state in terms of outgoing operators is |0̄〉 =
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(a)

(d)(c)

(b)

Figure 7. The four different electron-hole pair emission processes at C: In the two upper processes, the pair is split and
(a) the electron is emitted towards B and the hole towards A, or (b) the electron towards A and the hole towards B. In
the two lower processes, both quasi-particles are emitted towards (c) A or (d) towards B. The same processes occur at D.
After Ref. 35.

∏
E b†AC(E)b†BC(E)b†AD(E)b†BD(E)|0〉. Each term in Eq. (25) contains an operator product b†αC(E1)bβC(E)

acting on the ground state |0̄〉, describing the destruction of one electron at an energy −h̄ω < E < 0 below
the Fermi surface, i.e. the creation of a hole, and the creation of an electron at energy 0 < E1 < h̄ω above
(in leads αC and βC respectively). The effect of the weak potential oscillations is thus to create electron-hole
pair excitations out of the ground state.41 The four different scattering processes at each contact C and D are
pictured schematically in Fig. 7.

The state in Eq. (24) is orbitally entangled. It is a linear superposition of electron-hole pair wave packets
emitted at C and D, i.e. the contact indices C and D form an orbital two-level system, or qubit. In first
quantization for identical scattering amplitudes at C and D, the excitation out of the ground state |0̄〉 in Eq.
(24) can be written (|CC〉 + |DD〉) ⊗ |Ψ̄〉, where |CC〉 + |DD〉 is an orbitally entangled triplet state and |Ψ̄〉
contains all additional properties of the state, e.g. energy dependence and quasi-particle character. We note
that the emitted wave-packets contain quasi-particles in the energy range h̄ω. The clock frequency thus, in this
respect, plays the same role as the applied voltage in the entanglement schemes in e.g. Refs. 11, 18, 24.

The entanglement is detected via violation of a Bell inequality using noise correlations similar to the stochas-
tic intensity interferometer discussed above. The noise properties of pumped mesoscopic conductors are the
properties of several works..38, 39 The cross-correlation between the currents i = 1, 2 and j = 3, 4, averaged over
the time difference t′, is defined as

Sij(t) = 2e

∫
dt′〈∆Ii(t + t′/2)∆Ij(t − t′/2)〉 (26)

with ∆Ij(t) = Ij(t) − 〈Ij(t)〉. In contrast to the intensity interferometers discussed above this spectrum is
time-dependent. The zero-frequency part of this spectrum is found to be, for e.g. reservoirs 1 and 3

Sdc
13 =

e2

τ

[|fC
AB sin θA sin θB + fD

AB cos θA cos θB|2 + |fC
BA sin θA sin θB + fD

BA cos θA cos θB|2] (27)

This expression has a simple physical explanation.35 The first term in the bracket in Eq. (27) is the amplitude
for an emitted electron-hole pair from C or D to split, with the electron ending up in reservoir 1 and the hole in
3. The second term is just the amplitude for the opposite process, the electron detected in 3 and the hole in 1.
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The other correlators are found similarly. We note that only the scattering processes where the pair splits [(a)
and (b) in Fig. 7] contribute to the leading order cross-correlators.11

Considering for simplicity the case where the two scattering potentials at C and D are equal, i.e. tC = tD = t
etc, up to the pump phases φC/D, one can write

Sdc
13 = S0

[
cos2 θA cos2 θB + sin2 θA sin2 θB + 2γ cos θA cos θB sin θA sin θB

]
(28)

with S0 = (e2/τ)|δrt∗ + δt′r′∗|2, γ = cosϕ cos(φC − φD) and Sdc
24 = Sdc

13 and Sdc
14 = Sdc

23 = Sdc
13(θB → θB + π/2).

Here ϕ is an overall phase containing possible scattering phases of contacts A and B and phases due to propagation
along the edge states, including Aharonov-Bohm phases. The noise correlator is proportional to |δrt∗ + δt′r′∗|2,
i.e. proportional to δV 2. The last term in the bracket, the interference term, is proportional to cos(φC − φD),
i.e. the interference term is maximized for the two pumping potentials in phase. Due to the phase-dependent
term cosϕ, the noise correlators show a two-particle Aharonov-Bohm effect, similarly to Ref. [18, 19].

A Bell Inequality9, 26 can be formulated in terms of the probability to jointly detect11, 18 one quasiparticle
at A and one at B during a clock-cycle. This probability is formally defined as Pij =

∫ τ

0
dtdt′Pij(t, t′) with

Pij(t, t′) = P eh
ij (t, t′) + P eh

ij (t, t′) + P ee
ij (t, t′) + P hh

ij (t, t,′ ) and e.g.

P eh
ij (t, t′) ∝ 〈ce†

i (t)ch†
j (t′)ch

j (t′)ce
i (t)〉. (29)

The quasiparticle operators are defined as ce(t) =
∫ ∞
0 dE exp(iEt/h̄)c(E) and ch(t) =

∫ 0

−∞ dE exp(−iEt/h̄)c†(E).
Evaluating the joint detection probability, we find to leading order in δV that Pij ∝ Sdc

ij , as anticipated from
the discussion below Eq. (27). One can thus formulate the Bell inequality in terms of the period-averaged,
zero-frequency noise.11, 18, 28 Choosing an optimal11 set of scattering angles θA, θ′A, θB, θ′B, we arrive at the Bell
Inequality 2

√
1 + γ2 < 2 which is maximally violated for φD − φC = ϕ = 0 mod 2π. We note that dephasing

can be treated in the same way as in Ref. [11, 30].

So far we considered the limit of weak amplitude potential oscillations, where only one quanta h̄ω is absorbed
or emitted by the scattering electrons in regions C and D. Relaxing this assumption, for arbitrary strong
potential modulations, it is no longer possible to write the state emitted by contacts C and D as an excitation
of a single electron-hole pair out of the ground state. Instead, the state can be written as a linear superposition
of excitations of multiple electron-pairs, describing a complicated multi-particle entanglement. Moreover, while
the amplitude of the weak potential state oscillates with the single frequency ω, the strong potential state can
have a complicated time-dependence with a sum of amplitudes with oscillation frequencies nh̄ω. A calculation
of the joint detection probability Pij shows that it can in the general case, i.e. without considering particular
scattering potentials, not be expressed in terms of the noise cross correlator in Eq. (28). This is a consequence
of the complicated time-dependence of the emitted state. Moreover, averaging the time-dependent probability
Pij(t, t′) over a time-scale much longer than τ gives a Pij dominated by a quasiparticle current product term,
which makes a violation of the Bell Inequality impossible..28, 29 Clearly in the strong amplitude case a properly
adapted detection scheme has to be developed.

10. OPTIMAL DYNAMICAL ENTANGLEMENT PUMP

Recent work by Beenakker, Titov and Trauzettel42 investigates the optimization of a dynamical quantum en-
tanglement pump. How close can one get to the generation of one entangled electron-hole pair per pump cycle?
They investigate a quantum entanglement pump in the limit of large potentials. It is well known that pumps
can transfer electrons one by one.43 On the other hand it is also clear that the orbital entanglement scheme of
Fig. (4) does not work in the limit of deterministic two particle production. Therefore, there exist conditions for
which the pump is most efficient. The efficiency of the pump is defined with the help of probabilities weh

nm per
unit time that the pump generates an electron with energy E + nh̄ω to the left and hole with energy E − mh̄ω
to the right multiplied by the entanglement entropy εpq

nm

ε =
∑

En>EF ,Em<EF

[weh
nmεeh

nm + whe
mnεhe

mn]. (30)
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For a spin-independent 2 × 2-scattering matrix, the electron-hole pair is maximally entangled εeh
nm = εhe

mn = 1
and the average entanglement production per cycle is42

ε =
∑

En>EF ,Em<EF

[weh
nm + whe

mn]. (31)

The probabilities whe
mn are evaluated by projecting the state of the pump on an electron-hole pair with energy

E + nh̄ω to the left (A) and E − mh̄ω to the right (B) with either spin up or down,

Peh
nm =

∑

σ,σ′=↑,↓
ασ,σ′b†Aσb†Bσ′ |0 > . (32)

The coefficients ασ,σ′ of the projected states form a 2x2 matrix from which one can determine42 whe
mn = Trαα†.

The probability Eq. (31) can b written as

ε = P ↑
0 P ↓

1 + P ↓
0 P ↑

1 , (33)

where P σ
ν is the probability that ν spatially separated electron-hole pairs are generated in a given cycle.42 For

a spin-independent quantum pump we have 0 ≤ P ↑
1 = P ↓

1 ≤ 1 − P ↑
0 = 1 − P ↓

0 ≤ 1 and it follows that

ε ≤ 2P σ
0 (1 − P σ

0 ) ≤ 1/2 (34)

The maximal entanglement42 εmax = 1/2 of half a bit per cycle is reached for P ↑
0 = P ↓

0 = P ↑
1 = P ↓

1 = 1/2.
Form this result it is clear that a deterministic spin independent pump produces no entanglement, since P σ

0 = 0
implies ε = 0. This analysis demonstrates that as much as one Bell pair per two cycles can be generated by a
spin-independent pump.

11. CONCLUSIONS

In this work we have discussed aspects of shot noise in small coherent conductors related to a profound paradigm
of quantum mechanics known as entanglement. We have emphasized that a certain type of entanglement, orbital
entanglement, is directly related to shot noise correlations. Such orbital entanglement is present when we inject
carriers from two different contacts (or even just from two quantum channels). Examples are electron-electron
pairs emitted from two superconducting-normal contacts, stochastic electron-hole generation at tunneling con-
tacts or dynamically generated electron-hole pairs in ”quantum pumps”. An interesting signature is a two-particle
Aharonov-Bohm effect for which we have proposed a geometry which permits an unambiguous demonstration.
We have emphasized the generality of such orbital entanglement schemes and are convinced that it provides a
road map for the invention of additional ”orbital entanglers”.
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7. E. Schrödinger, ”Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften, 23, 807 -812,
(1935); 23, 844 -849 (1935).

8. A. Einstein, B. Podolsky and N. Rosen, ”Can Quantum-Mechanical Description of Physical Reality Be
Considered Complete?” Phys. Rev. 47, 777 - 780, (1935); D. Bohm and Y. Aharonov, ”Discussion of
Experimental Proof for the Paradox of Eisntein, Rosen, Padolsky”, ibid 108, 1070 - 1076, (1957).

9. J. Bell, ”On the Einstein-Podolsky-Rosen paradox”, Physics 1, 195 - 200 (1964).
10. M. A. Horne, A. Shimony, and A. Zeilinger, ”Two-particle interferometry”, Phys. Rev. Lett. 62, 2209-2212,

(1989).
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