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ABSTRACT

The intrinsic markers of nanoscale morphological alteration in fixed tissue biopsy referred to as disorder strength
and local correlation length, which can be easily and time-efficiently obtained from quantitative phase images, are
introduced. After presenting how to extract these markers from quantitative phase images obtained by highly
sensitive quantitative phase imaging system, spatial light interference microscopy (SLIM), we demonstrate the
effectiveness of these markers for diagnosis of benign and malignant breast tissues.
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1. INTRODUCTION

According to World Health Organization (WHO), cancer is the second leading cause of death globally.1 About
9.6 million deaths by cancer in 2018 is estimated, and effective treatment strategies require early and accurate
diagnosis of the disease. The gold standard method for cancer diagnosis is based on the microscopic investigation
of a stained tissue biopsy by a clinical pathologist. The primary stain provides the necessary contrast needed
for a trained pathologist to distinguish between normal and abnormal tissue morphology. However, this type
of investigation is qualitative, depends on the details of tissue processing and, as a result, often leads to inter-
observer variability. Thus, there is a need to provide an objective basis for evaluation based on physical metrics.

Quantitative phase imaging (QPI) is a label-free microscopy technique where contrast is generated by the
optical path-length difference (OPD), which is the product of the local thickness and refractive index changes
of the specimen.2–4 For a thin specimen, such as a tissue histology, the thickness can be considered spatially
invariant, in which case QPI images are proportional to a mean refractive index map, i.e., a refractive index
map.5–7 Since the refractive index is proportional to the dry mass content of cells and cellular matrix, it
informs on tissue density as well as cell organization within tissue.8,9 Tissue refractive index-based markers
have been used in the past for medical diagnosis and prognosis of several types of cancers and diseases.10–20 In
addition to the advantages of label-free imaging, the contrast mechanism in QPI provides access to additional
markers of disease, which are of value to histopathology. In particular, since QPI systems employ interferometric
measurements, they are sensitive to subwavelength fluctuations in OPD in both space and time. Therefore, local
fluctuations in quantitative phase images inform on nanoscale morphological alterations of cell structures, due
to the dry mass accumulation as well changes in extracellular matrix components.

In this work, we introduce two types of intrinsic markers of nanoscale morphological alteration in fixed tissue
biopsy referred to as disorder strength and local correlation length.5,6 The disorder strength which is a marker
of the local spatial fluctuations of refractive index was first used as a marker for pancreatic cancer diagnosis
by Subramanian et al.21 Their group used a spectroscopic imaging modality to measure this marker and have
subsequently employed it in diagnostic studies related to prostate, colon, breast, lung, and other cancers.21–29

Thereafter, Eldridge et al. successfully extracted the disorder strength from quantitative phase images and
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demonstrated the relationship of the marker to cancer cell mechanical properties.30 They applied this analysis
to colon, skin, and lung cancer cells to demonstrate an inverse relationship between shear stiffness and disorder
strength. Building on these results, Muñoz et al. used QPI to study the on-set and progression of shear stiffness
changes during malignant transformation in bronchial epithelial cells.31 Our group also showed that the disorder
strength measured by spatial light interference microscopy (SLIM), a sensitive white light QPI method, is a
quantitative marker of malignancy that can be used to classify benign and malignant breast tissue microarray
(TMA) cores. On the other hand, the local correlation length is also a marker of the local spatial fluctuations
of refractive index and have been proposed by our group. Although, the local correlation length map was
computed by calculating the two-dimensional (2-D) correlation function over regions of an image leading to long
computation times, we have proposed the efficient algorithm for calculating the local correlation length map,
requiring a smaller number of calculation steps. We image the quantitative phase images of 20 benign, 16 grade
1, 16 grade 2, and 14 grade 3 malignant cores of breast TMA using SLIM, which is a high-sensitivity QPI method,
able to detect sub-nanometer optical pathlength fluctuations. Then we classify these grades using the nanoscale
marker(s): disorder strength, local correlation length and both of them.

2. QUANTITAIVE PHASE IMAGING (QPI)

QPI is a label-free microscopy technique where contrast is generated by the optical path-length difference, and
the phase image, ϕ(x, y), measured in QPI is given by the equation:

ϕ(x, y) =
2π

λ

∫ L(x,y)

0

n(x, y, z)dz, (1)

where n(x, y, z) is the refractive index contrast between the tissue and the surrounding medium, L(x, y) is the
thickness of the tissue, and λ is the illumination wavelength. Here, in this work, we note that since we use
tissue slices with constant thickness of 4 µm, the thickness can be rewritten as L(x, y) ≈ L. Several methods
have been proposed so far, however the figures of merit of QPI methods such as acquisition rate, temporal and
spatial sensitivities and transverse resolution basically depend on the light source, interferometer and phase
calculation algorithm used in the QPI method. We use spatial light interference microscopy (SLIM) which
provides subwavelength sensitivity of OPD changes in both space and time.2

2.1 Spatial Light Interference Microscopy (SLIM)

A schematic of the SLIM setup is shown in Fig. 1(a). The SLIM module is attached to a commercial phase
contrast microscope (PCM). The lamp filament is imaged onto the condenser annulus (Köhler illumination
conditions), which is located at the front focal plane of the condenser lens. The specimen is located at the
back focal plane of the condenser lens, and front focal plane of the objective. The scattered and unscattered
fields are relayed by the objective and tube lenses. As a result, the expanded phase contrast image that has the
intensity distribution in accordance with the phase contrast caused by the specimen is observed at the image
plane. However, because the output of PCM is qualitative, the phase image, ϕ(x, y), cannot be directly retrieved
from this image. The SLIM module extracts ϕ(x, y) by phase modulating the incident light with respect to the
scattered light. The field at the image plane is Fourier transformed by the lens L1, such that the unscattered
light can be spatially isolated from the scattered light. Since the incident light has the ring form, by displaying
the corresponding ring pattern on the reflective liquid crystal phase modulator (LCPM), we ensure that the
scattered light remains unaffected. Four phase shifts are applied to the unscattered light at increments of π/2
rad, as shown in Fig. 1(b). The corresponding four images captured by the charge coupled device (CCD) are
obtained. Consequently, the quantitative phase image is retrieved as described in Ref.2 The most important
features of SLIM image is high sensitivities: according to previous work, sensitivities in OPD of 0.3 nm and 0.03
nm can be achieved in space and time, respectively.2,4 Figure 1(c) shows the quantitative phase image and its
expanded view of benign and malignant breast tissue samples. Since the thickness of tissue slice is constant, the
quantitative information extracted from these images of refractive index changes can be used for diagnosis and
prognosis of diseases.
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Figure 1. SLIM system. (a) Optical setup. (b) Phase patterns displayed on LCPM and corresponding intensity patterns
captured by CCD. (c) Example of quantitative phase images of benign and malignant breast tissue cores.
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2.2 Breast Tissue Microarrays

The samples comprised a TMA of cores constructed from breast tissue biopsies of 400 different patients. Each
biopsy was formalin fixed and paraffin embedded before sectioning it into slices of 4-µm thickness each using a
microtome. Two parallel, adjacent sections were selected from each biopsy, and one of these sections was stained
using H & E, leaving the other one unstained. Cores were then constructed for both the stained and unstained
tissue, and these were mounted on separate slides after deparaffinization, using xylene as the mounting medium.
The stained samples were imaged using a bright-field microscope, and their images were used by a board-certified
pathologist for diagnosing each core. In this paper, we studied benign tissue as well as cancerous tissue from
three different grades: benign (N = 20), malignant (grade 1, N = 16), malignant (grade 2, N = 16), and
malignant (grade 3, N = 14). Each patient consented to their tissue samples being used as part of the study, and
the process of obtaining consent was approved by the Institute Review Board (IRB Protocol Number 2010-0519)
at University of Illinois at Chicago (UIC). The data analysis was conducted on the samples at the University of
Illinois at Urbana–Champaign (UIUC) after all patient identifiers had been removed. The procedures used in
this study for conducting experiments using human subjects were also approved by the institute review board
at UIUC (IRB Protocol Number 13900).

3. NANOSCALE MORPHOLOGICAL ALTERATION MARKERS

3.1 Disorder Strength

By definition, the disorder strength map, Ld(x, y), is expressed as:

Ld(x, y) = < ∆n(x, y)2 >w lc, (2)

Here, < · · · >w denotes the average within the window of interest, ∆ means the difference from its average,
i.e., ∆n(x, y) = n(x, y)− < n(x, y) >w, and lc is the spatial autocorrelation length. Figure 2(a) shows the
quantitative phase image ϕ(x, y), which contains information about the spatial variation of the refractive index
change of tissues as expressed by Eq. 1. The local variance and average of the phase has the form, respectively,

< ∆ϕ(x, y)2 >w =

(
2πL

λ

)2

< ∆n(x, y)2 >w, (3)

and

< ϕ(x, y) >2
w =

(
2πL

λ

)2

n2
mean, (4)

Here, nmean is the average of the refractive index in the tissue. Thus, the local refractive index fluctuation map,
which is independent of the thickness, can be computed as

< ∆n(x, y)2 >w =
< ∆ϕ(x, y)2 >w

< ϕ(x, y) >2
w

n2
mean. (5)

Therefore, we can rewrite Eq. 2 and obtain the final form to calculate the disorder strength map from the
quantitative phase image as

Ld(x, y) =
< ∆ϕ(x, y)2 >w

< ϕ(x, y) >2
w

n2
meanlc. (6)

In our calculation, we used a window of 5 × 5 pixels (0.125 μ m/pixel). Figure 2(b) shows the map of <
∆ϕ(x, y)2 >w / < ϕ(x, y) >2

w. Since our interest is the fluctuation only in the tissue region, the background pixels
were excluded as shown in Fig. 2(c). Consequently, the disorder strength can be calculated using the resulting
phase image by mutiplying the constant refractive index, nmean of 1.38 and the mean spatial autocorrelation
length of all tissues, lc.
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Figure 2. Calculation procedure of DS map. (a) Quantitaitve phase image. (b) Phase fluctuation map. (c) Phase
fluctuation map after filtering and masking to exclude undesired pixels.

3.2 Local Correlation Length

The local correlation length depends on the morphological disorder, i.e., local refractive index fluctuations. When
the refractive index is spatially disordered, the spatial autocorrelation length within the local area will shorten.
In general, the spatial autocorrelation length is calculated as the width of the spatial autocorrelation function.
According to the Wiener-Khinchin theorem, the 2D spatial autocorrelation function can be obtained by taking
inverse 2D Fourier transform of the spatial power spectrum. In other words, two 2D Fourier transforms for
each image, leading to long computation times. Thus, to avoid this problem, we propose a new procedure that
performs these calculation in the frequency-domain.

First, as shown in Fig.3, we define the local correlation function as

Γ(x, y;x′, y′) = t(x, y;x′, y′)⊗x,yt(x, y;x′, y′), (7)

where ⊗x,y denotes the 2D correlation operation over (x, y). Function t(x, y;x′, y′) is a local phase function
centered at (x′, y′) and is expressed as

t(x, y;x′, y′) = ϕ(x, y)w(x, y;x′, y′)− < ϕ(x, y)w(x, y;x′, y′) >(x,y), (8)

where w(x, y;x′, y′) = rect
(

x−x′

a

)
rect

(
y−y′

a

)
is a local window function centered at (x′, y′), of width of a. The

angular brackets denote averaging within the local window.

Next, we define the local correlation length map, ρ(x′, y′), as the variance of the probability density which
can be obtained by normalizing Γ(x, y;x′, y′) by

∫∫
Γ(x, y;x′, y′)dxdy:

ρ2(x′, y′) =

∫∫
(x2 + y2)Γ(x, y;x′, y′)dxdy∫∫

Γ(x, y;x′, y′)dxdy
. (9)

Here, ρ(x′, y′) can be related to the bandwidth map of the spatial power-spectrum, τ(x′, y′), as ρ(x′, y′)τ(x′, y′) =
2π. The local bandwidth, τ(x′, y′), itself is defined as

τ2(x′, y′) =

∫∫
(k2x + k2y)|t(kx, ky;x′, y′)|2dkxdky∫∫

|t(kx, ky;x′, y′)|2dkxdky
. (10)

where t(kx, ky;x′, y′) is the Fourier transform of t(x, y;x′, y′) along (x, y). Using the differentiation property of
Fourier transforms as well as Parseval ’s theorem, this equation can be rewritten as

τ2(x′, y′) =

∫∫ [
| ∂
∂x t(x, y;x′, y′)|2 + | ∂

∂y t(x, y;x′, y′)|2
]
dxdy∫∫

|t(x, y;x′, y′)|2dxdy
, (11)
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Figure 3. Definition of t(x, y;x′, y′).

Figure 4. Calculation procedure of local correlation length map. (a) Quantitaitve phase image. (b) Local correlation
length map. (c) Local correlation length map after masking to exclude undesired pixels.

Finally, we can obtain the final result as

ρ(x′, y′) = 2π

√√√√ ∫∫
|t(x, y;x′, y′)|2 dxdy∫∫ [

| ∂
∂x t(x, y;x′, y′)|2 + | ∂

∂y t(x, y;x′, y′)|2
]
dxdy

. (12)

Using Eq. 12, the local correlation length maps can be calculated as shown in Fig.4 which were obtained from
the quantitative phase image.

4. BREAST CANCER CLASSIFICATION USING NANOSCALE MARKER

Figure 5 compares the average of  Ld(x, y) between benign and malignant cores (grade 1, 2 and 3). To extract
only tissue regions, the pixels which satisfy < ϕ(x, y) >w< 0.075 rad. and < ∆ϕ(x, y)2 >w / < ϕ(x, y) >2

w> 2.7
were excluded. The p-values which were obtained by two-sided Wilcoxon ranksum test are listed in the row
named p-value (DS) in Table 1. Although the statistically significant differences are indicated between benign
and malignant cores, the results show that the inter-grade cores are hardly distiguished. On the other hand,
Fig. 6 compares the average divided by the standard deviation of ρ map between benign and malignant cores
(grade 1, 2 and 3). We can use any feature quantity of ρ map, however the average divided by the standard
deviation was adopted because it indicated the best p-value. To extract only tissue regions, the background pixels
were segmented out by setting a threshold in the ρ(x, y) map. This threshold value was determined empirically,
and all pixels having correlation lengths below 1.3 µm were treated as background. The p-values which were
obtained by two-sided Wilcoxon ranksum test are listed in the row named p-value (LCL) in Table 1. Since the
p-value between 20 benign and 46 malignant cores was 0.000876, the local correlation length correlates with
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Figure 5. Disorder strength of benign (N = 20) and grade 1 (N = 16), grade 2 (N = 16), and grade 3 (N = 14) tissues.

Figure 6. Local spatial autocorrelation length of benign (N = 20) and grade 1 (N = 16), grade 2 (N = 16), and grade 3
(N = 14) tissues.

cancer grades. Furthermore, the results indicate that the statistically significant differences between cores with
more than 2 inter-grade differences. However, it may need to be combined with other markers for more detail
separation of grades. We conclude that the local correlation map can potentially be used by clinical pathologists
as a supplementary label-free disease marker for gauging the onset of malignancy especially in borderline cases.
The results of classification using both disorder strength and local correlation length will be presented at the
conference.
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Table 1. The p-values between different grades

Grades to be evaluated p-value (DS) p-value (LCL)

Benign - Malignant (G1, G2, G3) 0.000833 0.000876

Benign and Malignant (G1) - Malignant (G2, G3) 0.136913 0.000335

Benign - Malignant (G1) 0.002914 0.101101

Benign - Malignant (G2) 0.040033 0.005891

Benign - Malignant (G3) 0.004849 0.000498

Malignant (G1) - Malignant (G2) 0.299994 0.193509

Malignant (G1) - Malignant (G3) 0.950279 0.018837

Malignant (G2) - Malignant (G3) 0.371447 0.417581

5. CONCLUSIONS AND FUTURE WORKS

We have introduced two types of cancer markers of nanoscale morphological alteration referred to as disorder
strength and local correlation length and demonstrated classification of breast cancer tissues. Although neighbor-
ing grades were not distingished, the effectiveness of these markers to classify more than two grades including
benign and malignant tissues was shown. We need to consider tissue diagnosis using plural markers and ma-
chine learning based classification to achieve distinguishing between neighboring grades. The improved results
of classification accuracy by using both disorder strength and local correlation length will be presented at the
conference.
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