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ABSTRACT 

Due to the visual difference between the synthetic aperture radar (SAR) image and optical image, it is difficult to accurately 

label the SAR image, leading to the fact that there are only few labeled images with lots of unlabeled images. In this 

situation, the self-learning, which utilizes both the labeled samples and unlabeled samples to learn an optimal classifier, 

performs well. For self-learning, the performance of the initial classifier has a great influence on the following learning. 

During the self-leaning procedure, the classifier might easily get incorrect predictions of unlabeled samples provided by 
itself especially in original rounds when the accuracy of classifier is undesirable. Therefore, the performance of self-

learning is usually unstable. Based on the active sample proposal and modified self-learning, this paper gives a novel semi-

supervised method for SAR target discrimination. Firstly, an undirected graph is constructed by using all the unlabeled 

samples and the most informative samples are selected to be labeled by man. Secondly, confidence of the classifier’s 

prediction on unlabeled samples is achieved by both the discrimination result and local geometrical information. 

Experimental results on the measured SAR dataset illustrate the proposed semi-supervised discrimination method can still 

obtain good discrimination performance with few labeled samples. 
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1. INTRODUCTION 

For its capacity of generating high resolution images free from lighting and weather conditions synthetic aperture radar 

(SAR) has found wide applications both in civilian and military fields, such as earth measurement, urban planning and 

intelligence reconnaissance1. Meanwhile, SAR automatic target recognition (ATR) possesses great military potential and 

therefore draws much more attentions in the last decades. Lincoln lab proposes three stage process framework for SAR 

ATR based on attention mechanism2, 3, including detection, discrimination and classification. Target discrimination aims 

at decreasing the classification cost by removing the false alarms produced during the detection process. As the linking 

stage between detection and classification, discrimination has a huge effect on the performance of the whole SAR ATR 

system3, 4 and therefore attracts increasing attention in the past decades. 

The traditional SAR target discrimination is generally accomplished in a supervised way where all the training samples 
are needed to be labeled. The good performance of supervised methods is guaranteed by sufficient labeled samples. 

However, in real application, to obtain enough labeled samples is usually difficult, high-cost and time consuming. The 

coherent imaging mechanism of SAR image makes the situation worse. The lack of labeled samples makes it difficult to 

properly capture the underlying pattern of the image. Due to these restrictions of the supervised learning, the semi-

supervised learning, which utilizes both the labeled samples and unlabeled samples for training5, occurs and is applied to 

various applications. 

Classical semi-supervised learning methods contain self-learning6, co-training, and transductive SVM (TSVM)7. Self-

learning is a simple but effective semi-supervised method which first weakly trains a classifier with limited labeled samples 

and then choose a certain number of unlabeled samples with the most confident labels provided by the classifier to update 

the labeled training samples. This process repeatedly proceeds until some criterion is satisfied. The initial classifier trained 

with few true labeled samples has great effect on the accuracy of self-learning. If the labeled samples are not representative, 

the discrimination performance of the final classifier will greatly degrade. Moreover, in each repetition, the standard self-
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learning only utilizes the classifier’s posteriori probability outputs as the measurement of labeling confidence on unlabeled 

samples, which makes the labeling confidence away from errorless. Therefore, when using the self-learning method in 

SAR target discrimination, the discrimination is unstable. 

In this paper, propose a novel semi-supervised SAR target discrimination based on active sample proposal and modified 

self-learning to improve the SAR target discrimination performance. The major contributions of the proposed method are 
two-fold. Firstly, the initial few labeled samples are actively selected for man to be labeled rather than randomly selected. 

Specially, all the unlabeled samples are used to construct an undirected graph with the samples as its nodes and the 

similarity between them as the edge weights. The most informative samples are selected through the extended Nyquist-

Shannon sampling theory8 to be labeled by man as the initial labeled samples. Secondly, in each self-learning round, the 

classifier’s posteriori probability and local geometrical information are jointly utilized to reliably determine the labeling 

confidence on unlabeled samples. 

The rest of this paper is organized as follows. In section II, we present the improved semi-supervised discrimination method. 

In, section III, we perform experiments on the measured SAR dataset and analyze the results. Finally, we provide some 

conclusions on this paper in section IV. 

2. METHODOLOGY 

As shown in Figure 1, the proposed semi-supervised method for SAR target discrimination mainly includes two stages: 

the training stage and test stage. Meanwhile, the training stage mainly comprises three parts: (1) the Lincoln feature 

extraction; (2) the active samples proposal; (3) modified self-learning on Lincoln features. The training stage aims at 

learning an optimal classifier using a small amount of labeled SAR chips and a large amount of unlabeled SAR chips. The 

test stage is similar with the training stage except that the optimal SVM classifier obtained in the training stage is directly 

utilized to discriminate the test SAR chips. Since this paper is mainly concentrated on the training stage, we minutely 

present the process of training stage in the following. 
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Figure 1. Framework of the semi-supervised discrimination method. 

2.1 Lincoln feature extraction 

For realizing SAR target discrimination, the Lincoln Lab designed 23 Lincoln features to capture the difference between 

the target and clutter, which has been used in the real SAR target recognition system. In the proposed semi-supervised 

target discrimination task, two texture-based features are chosen as the discrimination features since they can effectively 

discriminate target from clutter. 

(1) The log standard deviation feature: The standard deviation of an image measures the fluctuation of pixel intensities. 

Usually, the intensities of a target are more greatly fluctuated than those of the clutter and therefore have the larger standard 

deviation. To alleviate the effect of speckle noise in SAR images, the log standard deviation 𝜎 is utilized in the proposed 

method and can be obtained by 

𝜎 =
√𝑆2 −

𝑆1

𝑇
𝑇 − 1

 where 

Proc. of SPIE Vol. 12506  1250662-2



𝑆1 = ∑ 10 𝑙𝑜𝑔10 𝐼 (𝑥, 𝑦)

𝑥,𝑦∈𝑟𝑒𝑔𝑖𝑜𝑛

 

𝑆2 = ∑ [10 𝑙𝑜𝑔10 𝐼 (𝑥, 𝑦)]2
𝑥,𝑦∈𝑟𝑒𝑔𝑖𝑜𝑛                        (1) 

𝐼(𝑥, 𝑦) is the intensity value of the pixel located at (𝑥, 𝑦), and 𝑇 represents the number of pixels in the SAR image. 

(2) The fractal dimension feature: Another widely used Lincoln feature is the fractal dimension, which measures how the 

pixels with large intensity value in a binary image distribute in the spatial space. It describes the spatial dimension of an 

object. Generally speaking, the bright pixels of a target chip usually concentrated around the target while those of clutter 

are randomly distributed. Therefore, we use the fractal dimension to separate the target from clutter. The fractal dimension 

is defined as the Hausdorff dimension of N brightest pixels in a binary image and calculated as follows: 

 𝐻𝑑 =
𝑙𝑜𝑔10 𝑁1−𝑙𝑜𝑔10 𝑁2

𝑙𝑜𝑔10 𝑑2−𝑙𝑜𝑔10 𝑑1
 (2) 

where 𝑁1 and 𝑁2 denotes the number of 1-pixel-by-1-pixel boxes and 2-pixel-by-2-pixel boxes that are needed to cover 

the bright region in the binary image, respectively; 𝑑1 and 𝑑2 represent the size of boxes, and 𝑑1 = 1, 𝑑2 = 2. Since the 

target is more densely distributed than the clutter, 1 < 𝐻𝑑 < 2 for the target and 𝐻𝑑 < 1 for the clutter.  

2.2 Active samples proposal 

After extracting the Lincoln feature, a graph is constructed with all the unlabeled samples and the most informative samples 

are selected. These selected samples will be labeled by man and utilized to train the initial classifier. In this paper, the 

theoretical finding of Akshay Gadde et al.8 on graph signal sampling is adopted to facilitate the sample selection. 

Concretely, we construct an undirected neighborhood graph 𝐺 = (𝑉, 𝐸) with 𝑁 unlabeled samples as its nodes and 

edges 𝐸 = {(𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖𝑗)}, 𝑥𝑖 , 𝑥𝑗 ∈ 𝑉, 𝑖 = 1, ⋯ , 𝑁, 𝑗 = 1, ⋯ , 𝑁, where (𝑥𝑖 , 𝑥𝑗 , 𝑤𝑖𝑗) represents an edge with weights 𝑤𝑖𝑗 

between nodes 𝑥𝑖  and 𝑥𝑗 , denoting the similarity between the respective nodes. A graph is eminently suitable for 

describing the relationship among elements in the dataset. There are three matrices widely used in the graph, including the 

degree matrix 𝐷, the adjacency matrix 𝑊 and the combinatorial Laplacian matrix 𝐿. 𝐷 = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2, … , 𝑑𝑁} is a 

diagonal matrix, where 𝑑𝑖 is the degree of the node 𝑥𝑖 and obtained by summing the weights of edges connected to node 

𝑥𝑖 . 𝑊 is an 𝑁 × 𝑁 matrix with 𝑊𝑖𝑗 = 𝑤𝑖𝑗  and 𝐿 = 𝐷 − 𝑊. In this paper, the symmetric normalized form of the 

Laplacian matrix L  = 𝐷−
1

2𝐿𝐷−
1

2  is used, which is a symmetric positive semi-definite matrix with a set of real 

eigenvalues and a corresponding orthogonal set of eigenvectors. 

In the field of graphs, a graph signal is defined as a scalar-valued discrete mapping 𝑓: 𝑉 → ℝ, and the value of the signal 

on 𝑥𝑖  is denoted by 𝑓(𝑥𝑖). We suppose 𝑆 ∈ 𝑉  is a subset of the graph and 𝑆𝑐 = 𝑉\𝑆 is its complement set. By 

reserving the value of signal on a subset of nodes 𝑆, i.e., the sampling set, we can realize sampling a graph signal 𝑓 onto 

𝑆. 

In the realm of traditional signal processing, the Nyquist-Shannon sampling theorem provides an upper bound for a signal’s 

bandwidth, by which the signal could be accurately reconstructed given a certain sampling rate. Analogously, in the field 

of graph, a concept of frequency is also needed. The eigenvalues and eigenvectors of the Laplacian matrix L  can 

provide such a spectral interpretation. Meanwhile, the eigenvalues can be regarded as frequencies and imply the change of 

eigenvector. That is to say when an eigenvalue is high, its corresponding eigenvector will violently change9. The 

orthogonal eigenvectors can span a subspace in ℝ𝑁 and the projection of a signal onto the eigenvectors is regarded as its 

Graph Fourier Transform (GFT), analogous with the Fourier transform in traditional signal processing. 

Let 𝐿2(𝑆𝑐) be the space of all graph signals that are zero everywhere except possibly on the nodes in 𝑆𝑐 , i.e., ∀𝜙 ∈
𝐿2(𝑆𝑐), 𝜙(𝑆) = 0. Moreover, suppose 𝜔(𝜙) is the bandwidth of a graph signal 𝜙, i.e., the maximum non-zero frequency 

of the signal. According to the Theorem Anis et al. have proved9, for a set 𝑆, the maximum cut-off frequency can be found 

by searching the bandwidth 𝜔(𝜙∗) of the smoothest possible signal 𝜙∗ ∈ 𝐿2(𝑆𝑐). From the work by Antonio9, the true 

cut-off frequency 𝜔𝑐(𝑆) can be relaxed by 𝛺𝑘(𝑆), where 𝑘 > 0 is a given integer parameter. The larger 𝑘 is, the better 

the estimate of cut-off frequency is. 𝛺𝑘(𝑆) and 𝜙𝑘
∗  can be numerically obtained from the smallest eigenpair (𝜎1,𝑘, 𝜓1,𝑘) 

of the reduced matrix ( ) c

k

S
L : 

 𝛺𝑘(𝑆) = 𝜎1,𝑘 (3) 
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 𝜙𝑘
∗ (𝑆𝑐) = 𝜓1,𝑘 , 𝜙𝑘

∗ (𝑆) = 0 (4) 

Then the optimal sampling set 𝑆𝑜𝑝𝑡  can be found according to algorithm 1. 

Algorithm 1. Greedy process for searching 𝑆𝑜𝑝𝑡  

Input: undirected graph 𝐺 = {𝑉, 𝐸} on unlabeled samples, Laplacian matrix ℒ, target size 

𝐿, parameter 𝑘 ∈ ℤ+, 𝑆 = {∅} 

if |𝑆| < 𝐿 do 

    For 𝑆, obtain the smoothest signal 𝜙𝑘
∗ ∈ 𝐿2(𝑆𝑐) by Eq. (3) and Eq.(4). 

    Update 𝑣 with 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖
[(𝜙𝑘

∗ (𝑥𝑖)
2)]. 

    Update 𝑆 with 𝑆 ∪ 𝑣 

 end if 

 𝑆𝑜𝑝𝑡 ← 𝑆 

2.3 Modified self-learning 

The standard self-learning is the simplest semi-supervised learning paradigm. It firstly trains a classifier with limited 

labeled samples and then predicts the labels on the unlabeled samples. The most confident predictions will be regarded as 

labeled samples to update the labeled training set. During the train stage, this process proceeds repeatedly until some 

criterion is achieved. As the classifier is not absolutely correct, its predictions on unlabeled samples are usually away from 

errorless. 

In order to guarantee the reliability of labels on unlabeled samples, we incorporate the classifier’s posteriori probability 

and local geometrical information to evaluate the confidence of whether the label is correct. According to the manifold 
assumption, a sample usually has the same label with most of its neighboring samples, which can be used to estimate the 

reliability of the labels on unlabeled samples. For self-learning, the initial labeled samples are completely correct. Therefore, 

the local geometrical relationship between the unlabeled samples and true labeled samples can be exploited as the basis of 

determining the confidence of unlabeled samples. 

Let 𝑃𝑟(𝑦 = 1) denote the posteriori probability of a sample being positive, which is estimated by the classifier. Then, the 

labeling confidence of each sample is estimated based on the following equation: 

 𝐽𝑝 = 𝑃𝑟(𝑦 = 1) ⋅ (
𝑝𝑐

𝑐
) (5) 

where 𝑝𝑐  represents the number of positive sample in the 𝑐 neighbors. 

Let 𝐿 be 𝑀 labeled training samples selected by the method in 2.2 and 𝑈 be 𝑁 unlabeled samples. The SVM classifier 

is chosen in the SAR target discrimination for its outstanding performance. Thus, the sketch of the modified self-learning 

algorithm can be depicted as algorithm 2: 

Algorithm 2. Modified Self-learning 

Input: labeled training set 𝐿, unlabelled training set 𝑈; 

Output: optimal classifier 𝐹. 

Initialize classifier 𝐹 based on 𝐿. 

Construct a pool 𝑈′ of unlabeled samples by randomly selecting 𝑢 samples from 𝑈. 

if  length(𝑈)>0 do 

    Exploit classifier 𝐹 to give labels of unlabeled samples on the portion 𝑢 in 𝑈′. 
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Estimate the confidence of each samples using Eq. (5). 

Select 𝑝 samples with high labeling confidence as positive samples and 𝑛 samples with 

low-labeling confidence as negative samples to expand the labeled training set. 

Update 𝐹 using the augmented labeled training set 𝐿. 

Randomly select 2𝑝 + 2𝑛 samples from 𝑈 to supplement 𝑈′. 

 end if 

3. EXPERIMENTS 

3.1 Dataset description and experiment set 

In order to verify the effectiveness of the proposed method, we perform experiments on the miniSAR and FARAD SAR 

dataset, which is released by Sandia National Laboratories of America in 2005 and 2015, respectively. These two SAR 

datasets arewidely used to demonstrate the SAR target detection and discrimination performance. The miniSAR dataset 

totally contains twenty SAR images whose resolution is 0.1mx0.1m and size is 1638x2501. Seven images which include 
targets are employed in our experiments. The FARAD SAR dataset totally contains 175 SAR images, with with 4-inch 

resolution, and we choose 7 images in our experiments. There exist different types of objects in these SAR images, not 

only including the interested targets such as cars and helicopters, but also the clutters such as roads, trees, building and so 

on. In Figure 2, we respectively give an example image in the miniSAR and FARAD SAR dataset, where the interested 

targets are circled with red rectangle. 

The following two experiments are performed using a PC with Intel Core i7-6700 CPU of 3.3 GHz and memory of 16 

GB. The program codes are written in MATLAB R2016a. 

Firstly, the log-normal-based CFAR and clustering method10 are utilized to detect the seven SAR image and obtain the 

candidate regions which may contain the targets, i.e., chips. Tables 1 and 2 give the detection results of miniSAR and 

FARAD SAR datasets, respectively, from which we can see that the number of clutters is double that of targets and it is 

necessary to remove the false alarm from candidate regions to alleviate the classification cost. For discrimination 
experiments, we regard the detection results of three SAR images as the training set and the rest SAR images as the test 

set. 

 
(a)                                (b) 

Figure 2. Example image from the miniSAR and FARAD SAR dataset. (a) miniSAR. (b) FARAD SAR. 

Table 1. Number of chips of the detection results of miniSAR dataset. 

 Number of clutters Number of targets Number of total chips 

Training set 313 156 469 

Test set 273 153 426 
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Table 2. Number of chips of the detection results of FARAD SAR dataset. 

 Number of clutters Number of targets Number of total chips 

Training set 242 157 399 

Test set 154 66 220 

3.2 Experimental results 

In this part, the performance of the proposed method is compared with those of the standard self-learning and supervised 

discrimination method. We carry out a series of experiments under different configurations of initial labeled samples. For 

compared methods, the initial labeled samples are randomly chosen from the unlabeled training set and labeled by man, 

which is different from the proposed method where the initial labeled samples are automatically chosen by the algorithm 
and labeled by man. Figure 3 shows how the average accuracy of three discrimination methods varies under the same 

configurations of initial labeled samples. To guarantee the reliability of discrimination results, the experiments are repeated 

for 10 independent runs and the accuracy is obtained by averaging over these repetitions. 

From Figure 3, it can be seen that as the number of initial labeled samples increases, the performance of three discrimination 

methods firstly becomes better and then remains stable. This results from that the discrimination performance mainly relies 

on the valuable information provided by the samples, rather than the number of labeled samples. Also, our proposed method 

performs better and is more stable than the standard self-learning and the supervised method with the same number of 

labeled samples. This is mainly because: (1) the proposed method actively selects the most informative samples to be 

labeled by man, making sure the initial classifier is with high performance; (2) the proposed method selects the most 

reliable samples to update the classifier during the iterative learning. 

From Figure 3, it can be seen that as the number of initial labeled samples increases, the performance of three discrimination 
methods firstly becomes better and then remains stable. This results from that the discrimination performance mainly relies 

on the valuable information provided by the samples, rather than the number of labeled samples. Also, our proposed method 

performs better and is more stable than the standard self-learning and the supervised method with the same number of 

labelled samples. This is mainly because: (1) the proposed method actively selects the most informative samples to be 

labeled by man, making sure the initial classifier is with high performance; (2) the proposed method selects the most 

reliable samples to update the classifier during the iterative learning. 

  
(a) miniSAR                   (b) FARAD SAR dataset 

Figure 3. Average accuracy of different discrimination methods changes as the number of initial labeled samples increases for miniSAR 
and FARAD SAR dataset. 

4. CONCLUSION 

In this paper, we propose a novel semi-supervised method based on active sample proposal and modified self-learning for 
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SAR target discrimination. Firstly, only given the unlabeled samples, the Lincoln features are extracted. Then, the most 

informative samples are selected for man to be labeled through the sampling theory. Finally, we modify the self-learning 

algorithm by incorporating the classifier’s posteriori probability and local geometrical information to estimate the label’s 

confidence on unlabeled samples. We perform experiments on the real SAR datasets and the results illustrate that under 

the same configurations of initial labeled samples the proposed semi-supervised method performs better than the standard 

self-learning and supervised discrimination method. 
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