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ABSTRACT 

In the field of deep learning, convolutional neural networks and transformer architecture have achieved considerable 

success. This paper combines the advantages of these two architectures to achieve the encoding of multi-scale spatial 

features in an image. This is done by using convolutional kernels of different sizes for convolutional operations at each 

stage. This allows the model to obtain markers with rich and diverse features. The self-attention mechanism is then used 

to further improve the feature representation and introduce residual links. The experimental results demonstrate that the 

proposed model exhibits robust performance on the CIFAR-100 and CIFAR-10 datasets, with comparable performance 

and fewer parameters compared to traditional CNN models. 
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1. INTRODUCTION 

The integration of Convolutional Neural Networks (CNNs)1 and Transformer architecture2 in the field of image 

recognition is currently a subject of active research. 

In China, several advancements in image processing tasks have been proposed. One such advancement is the 

Asymmetric Cross-Attention Hierarchical Network (ACAHNet)3, which utilizes an Asymmetric Multiheaded Cross 

Attention (AMCA) module to enhance inter-feature interactions for remote sensing image change detection. The dual-

branch Transformer-CNN (DBTC) model4 enhances face image super-resolution by extracting multi-scale features with a 

transformer branch and neighboring pixel change features with a CNN branch. In medical image analysis, a pneumonia 

recognition framework5 employs a Multilevel Multi-Head Self-Attention (MMSA) mechanism to focus on task-relevant 

features. The Hybrid Transformer and CNN Attention Network (HTCAN)6 is a model that combines transformer and 

CNN networks for stereo image super-resolution. It enhances single images and fuses stereo information. Furthermore, 

the Spatial Attention-Guided CNN-Transformer Aggregation Network (SCTANet)7 employs Hybrid Attention 

Aggregation (HAA) and an MLP-based upsampling module to efficiently reconstruct facial image details. 

In the field of deep learning research conducted abroad, there has been a significant focus on combining CNN and 

Transformer architecture. The CASCaded Attention DEcoder (CASCADE)8 is an attention-based decoder for medical 

image segmentation. It leverages hierarchical visual transformer features with attention gates and convolutional modules. 

The PolSARFormer9 model utilizes 3D and 2D CNN with local windowed attention (LWA) for polarimetric synthetic 

aperture radar (PolSAR) data classification. In the context of weakly supervised semantic segmentation, TransCAM10 

integrates Conformer’s attention weights with CNN-generated class activation maps (CAMs) to capture both local and 

global features. An attention transformer-based architecture11 has been proposed for MRI brain tumor classification, with 

the objective of enhancing accuracy by fusing local and global features and introducing an enhanced CNN (iResNet). 

WetMapFormer12 is a network designed for the mapping of wetlands. It employs LWA to reduce the cost of the mapping 

process while improving the generalization of the features extracted. 

The objective of this paper is to examine the integration of CNN and Transformer architecture, with a particular focus on 

the combination of multi-scale convolutions, residual structure, and multi-head self-attention mechanisms. The proposed 

model in this paper is designated as the Self-Attention Model Based on Multi-Scale Convolution (SAMC). 

2. METHODOLOGY 

The architectural diagram of the SAMC model is presented in Figure 1. 
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Figure 1. SAMC structure diagram. 

2.1 Positional embedding 

The utilization of positional embedding is of paramount importance for the deployment of the transformer in image 

classification scenarios where there is no inherent sequence order. The ViT model13 accepts an RGB image with 

dimensions H×W×3, divides it into P×P patches, and then reorganizes it into a sequence for the transformer to process. 

The length N of the sequence is calculated in accordance with equation (1). 

𝑁 = HW/P2                                                                                        (1) 

However, the ViT model may be subject to two potential limitations. Firstly, the model may not be able to effectively 

capture low-level features. Secondly, it may result in the parameters becoming too large. These two factors may impact 

the performance of the ViT model in tasks such as image classification. 

In this paper, we draw on GoogLeNet’s Inception module14. Firstly, a multi-size convolutional kernel is used to extract 

low-level features from the preprocessed image. Downsampling is performed after feature extraction using average 

pooling to reduce the computational burden for subsequent processing. Furthermore, due to the use of convolutional 

operations, the process of positional coding can be eliminated. The convolutional operation enables the network to learn 

the local features of the input data through the properties of local connectivity and weight sharing. Furthermore, the 

positions of these features in space are naturally encoded by the sliding process of the convolutional kernel. Therefore, 

the convolution operation here both extracts diverse low-level features and implicitly encodes positional information[15]. 

2.2 Convolution projection 

The self-attention mechanism is a component of the Transformer model that allows the model to compute the attentional 

weight of each element in a sequence relative to all other elements. In natural language processing (NLP), the self-

attention mechanism achieves its functionality by generating three vectors of query, key and value through a linear 

projection. However, this approach may lead to an increase in computation and the number of parameters. 

To address this problem, CvT15 proposes the use of convolutional projection instead of linear projection. Convolutional 

projection takes advantage of the spatial structure of the image by capturing local image features and encoding them as Q, 

K, and V. Additionally, the parameter sharing property of the convolutional layer reduces the model parameters and 

improves computational efficiency. Moreover, the parameter sharing property of the convolutional layer reduces the 

number of model parameters, improves computational efficiency, and preserves sensitivity to local image features. 

In convolutional projection, multiple convolutional kernels are applied independently to each channel of the input feature 

map to produce a set of feature maps. Each convolution kernel is responsible for extracting one spatial feature, and this 

design helps the model to extract features at multiple scales, resulting in richer Q, K, and V representations. The formula 

for the convolutional projection is given by equation (2). 

𝑥𝑖
𝑞/𝑘/𝑣

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐶𝑜𝑛𝑣2𝑑(𝑅𝑒𝑠ℎ𝑎𝑝𝑒2𝐷(𝑥𝑖), 𝑠))                                                     (2) 

The notation 𝑥𝑖 represents the token prior to convolutional projection, while 𝑥𝑖
𝑞/𝑘/𝑣

 denotes the input token of the Q/K/V 

matrix of the ith layer. The term Conv2d denotes depth-separable convolution, while s refers to the step size of the 

convolution. 

The output of the convolutional projection can be used directly as input to the transformer layer, providing a flexible 
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feature representation for the model. The convolutional projection allows the model to better simulate the relationships 

between different regions in an image, improving performance in tasks such as image classification. 

2.3 Residual structure 

In this study, we used residual structure16. The residual structure formula is given in equation (3). 

𝑦 = Encoder(ConvEmbed(𝑥)) + avg_pool(𝑥)                                                      (3) 

The input image data, represented by the variable x, is processed through the ConvEmbed layer, which performs 

convolutional embedding operations to achieve positional coding and extract low-level features from the image. The 

output of ConvEmbed is then fed to the Encoder layer for further processing and encoding, which generates higher-level 

feature representations. 

In order to achieve effective residual joining, the embodiment further comprises the step of performing an average 

pooling operation on the original image x. The purpose of this operation is to compress the size of the image and reduce 

the amount of computation while preserving critical global information. As a result, the output of avg_pool(x) is summed 

with the output of Encoder(ConvEmbed(x)) to form a residual link. This ensures that the model makes full use of the 

information in the original image during training, thereby improving the model’s performance. 

3. RESULTS 

The SAMC model was trained and tested on the CIFAR-100 and CIFAR-10 datasets, respectively. The number of 

parameters and accuracy of the observed model are presented in Table 1. 

Table 1. Accuracy and parameter table for SAMC model on CIFAR-10 and CIFAR-100. 

Dataset Parameter(M) Top 1 Top 5 

CIFAR-10 1.21 93.42% 99.80% 

CIFAR-100 1.22 73.47% 92.22% 

3.1 Application on CIFAR-100 

After the SAMC model was trained on the CIFAR-100 dataset, the model parameters were increased from the original 

1.22 M to 3.6 M, resulting in an improvement in accuracy from 73.47% to 74.74%. This was achieved by utilizing 

Optuna search parameters. The final parameters and accuracy of each network are presented in Table 2. 

Table 2. Accuracy and parameter table for each network on CIFAR-100. 

Net Parameter(M) Accuracy 

SAMC 1.22 73.47% 

VGG19 39.33 71.65% 

MobileNetV2 2.37 66.12% 

ShuffleNet 1.01 69.58% 

ResNet34 21.33 76.83% 

GoogLeNet 6.4 76.55% 

Figure 2 illustrates the top-1 and top-5 accuracies of several networks on the CIFAR-100 dataset. 
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Figure 2. Top 1 and top 5 accuracy by network on CIFAR-100. 

Figure 2 and Table 2 demonstrate that SAMC has a smaller number of parameters under the same conditions, with only 

approximately 1.22 M, and an accuracy of 73.47%. 

3.2 Application on CIFAR-10 

A series of convolutional neural networks and the SAMC model were trained and tested on the CIFAR-10 dataset under 

identical experimental conditions. 

Figure 3 illustrates the Top1 and Top5 accuracies of the SAMC model and multiple convolutional neural networks on the 

CIFAR-10 dataset. 

The parameters and maximum accuracy of each network on CIFAR-10 are presented in Figure 4. 

  

Figure 3. Top 1 and top 5 accuracy by network on CIFAR-10. Figure 4. Parameters and accuracy of each network on CIFAR-10. 

The results of each network tested on the CIFAR-10 dataset show that all have high accuracy. MobileNetV2 and 

ShuffleNet have slightly lower accuracy. In contrast, SAMC, VGG19, GoogLeNet and ResNet34 have relatively close 

accuracy, with SAMC having fewer parameters than the other networks. 

4. CONCLUSION 

Finding lightweight deep learning models can be beneficial in applications. Our study shows that by optimizing the 

network structure, model parameters can be significantly reduced while maintaining classification accuracy. 

Looking ahead, we see several promising directions for future research. Further investigation of a more efficient network 

structure is needed. Applying the proposed model to a wider range of tasks and datasets will facilitate a deeper 

understanding of its generalizability. In addition, it is necessary to explore more effective attention mechanisms in order 

to reduce the computational requirements and further reduce the overall weight of the model. 

In conclusion, it is anticipated that our work and the efforts of the research community will continue to drive progress in 

more efficient and effective models for widespread applications. 
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