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ABSTRACT

We provide a complete solution of the problem of noise-induced escape in periodically driven systems. We show
that both the exponent and the prefactor in the escape rate display scaling behavior with the field intensity.
The corresponding scaling is related to synchronization of escape events by the modulating field. The onset of
the synchronization with the increasing field and its loss as the field approaches a bifurcational value lead to a
strongly nonmonotonic field dependence of the prefactor.
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1. INTRODUCTION

Thermally activated escape from a metastable state is often investigated in systems driven by time-dependent
fields. Recent examples are activated transitions in modulated nanomagnets1–3 and Josephson junctions.4–6

Modulation changes the activation barrier. This enables efficient control of the escape rate and accurate mea-
surement of the system parameters.7, 8 It also provides an insight into the dynamics of a system far away from
its metastable states. Most frequently used types of modulation are slow ramping of a control parameter, when
the system remains quasistationary, and periodic modulation. In the latter case the system is away from thermal
equilibrium, which complicates the theoretical formulation of the escape problem.9

In the present paper10 we extend to periodically modulated systems the analysis of the escape rate done by
Kramers for systems in thermal equilibrium.11 Our approach gives the full time-dependent escape rate W (t)
as well as the period-averaged rate W = ν exp(−R/D), where R is the activation energy of escape and D is
the noise intensity, D = kBT for thermal noise. We show that the escape probability may display exponentially
sharp periodic peaks as a function of time, which means that it is exponentially strongly synchronized by periodic
modulation. Such synchronization occurs for comparatively low modulation frequency and exists in a limited
range of modulation amplitudes. Our analysis allows us to study not only how it starts, but also how it ends
with the increasing amplitude.

For comparatively small modulation amplitude A escape of a periodically driven Brownian particle was
studied by Smelyanskiy et al.12 The range of intermediate A and intermediate modulation frequencies ωF was
analyzed by Lehmann et al.13 and by Maier and Stein.14 Here we find W (t) for an arbitrary A and an arbitrary
interrelation between ωF and the relaxation time of the system tr. We show that the prefactor ν depends on
A strongly and nonmonotonically. It displays scaling behavior near the bifurcational modulation amplitude Ac

where the metastable state disappears.

In the spirit of Kramers’ approach, we relate the instantaneous escape rate W (t) to the current well behind the
boundary qb(t) of the basin of attraction to the initially occupied metastable state (q is the system coordinate).
This is the current usually studied in experiments. Because of the oscillations of qb(t), it has a different functional
form from the current13, 14 at the basin boundary qb(t).

We find W (t) by matching the boundary-layer probability distribution near qb(t) with the distribution ρ(q, t)
well inside the basin of attraction. The boundary-layer distribution is obtained by linearizing the equation of
motion near qb(t), whereas the distribution inside the basin is obtained using the eikonal approximation. Quite
remarkably, for sufficiently strong modulation the matching of the two distributions can be done without full
determination of all parameters of ρ(q, t) near qb(t), using singular features of the dynamics of large fluctuations.
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2. THE FOKKER-PLANCK EQUATION

We consider noise-induced escape of a periodically modulated overdamped Brownian particle. The probability
distribution of such particle ρ(q, t) is given by the solution of the Fokker-Planck equation (FPE)

∂tρ = −∂q [K(q, t)ρ] + D∂2
qρ. (1)

Here, K(q, t) is the periodic force driving the particle, K(q, t) = K(q, t + τF ) ≡ −∂qU(q, t), where τF = 2π/ωF

is the modulation period and U(q, t) is the metastable potential. The metastable state qa(t), from the vicinity
of which the system escapes due to noise, and the basin boundary qb(t) are, respectively, the stable and unstable
periodic solutions of the equation of motion of the particle in the absence of noise,

q̇i = K(qi, t), qi(t + τF ) = qi(t) (i = a, b). (2)

We will assume that the noise intensity D is small. Then in a broad time range tr � t � 1/W the distribution
ρ(q, t) is nearly periodic in the basin of attraction to qa(t). The current away from this basin, and thus the
escape rate W (t), are also periodic.

The distribution ρ is maximal at the metastable stable state qa(t) and falls off exponentially away from it.
In the presence of periodic driving it acquires singular features as D → 0,15 some of which have counterparts in
wave fields,16 with D playing the role of the wavelength. The singularities accumulate near qb(t). In order to
find W (t) one has to understand how they are smeared by diffusion.

In the absence of noise the motion of the system close to the periodic states qi(t) (i = a, b) is described by
the equation q̇ = K with K linearized in q − qi(t). The evolution of q(t) − qi(t) is given by the factors

κi(t, t′) = exp
[∫ t

t′
dτ µi(τ)

]
(i = a, b), (3)

where µi(t) = µi(t + τF ) ≡ [∂qK(q, t)]qi(t). Over the period τF the distance q(t) − qi(t) decreases (for i = a) or
increases (for i = b) by the Floquet multiplier Mi = κi(t + τF , t) ≡ exp(µ̄iτF ), where µ̄i is the period-average
value of µi(t), with µ̄a < 0, µ̄b > 0.

For weak noise the expansions of K can be used to find ρ(q, t) near qa,b(t). Near the metastable state qa, the
distribution ρ is Gaussian,17 ρ(q, t) ∝ exp{−[q − qa(t)]2/2Dσ2

a(t)}. The reduced time-periodic variance is given
by the equation

σ2
i (t) = 2

∣∣M−2
i − 1

∣∣−1
∫ τF

0

dt1κ
−2
i (t + t1, t) (4)

with i = a (in the absence of modulation σ2
a = 1/|µa|).

2.1. The boundary-layer distribution
The general form of the periodic distribution near the unstable state qb(t) (the boundary-layer distribution) can
be found from Eq. (1) using the Laplace transform, similar to the weak-driving limit.12 With K linear in q− qb,
the equation for the Laplace transform of ρ(q, t) is of the first order, giving

ρ(q, t) =
∫ ∞

0

dp e−pQ/D ρ̃(p, t), Q = q − qb(t),

ρ̃(p, t) = ED−1/2 exp
{− [

s(φ) + p2σ2
b (t)/2

]
/D

}
. (5)

In Eq. (5), E is a constant, s(φ) is an arbitrary zero-mean periodic function, s(φ + 2π) = s(φ), and φ ≡ φ(p, t),

φ(p, t) = ΩF ln[p κb(t, t′)/µ̄blD]. (6)

Here, ΩF = ωF /µ̄b ≡ 2π/ lnMb is the reduced field frequency, lD = (2D/µ̄b)1/2 is the typical diffusion length,
and t′ determines the initial value of φ; from Eq. (6), φ(p, t + τF ) = φ(p, t) + 2π. In Eq. (5) we assumed that
the basin of attraction to qa lies for q < qb(t), and |Q| � ∆q ≡ mint[qb(t)− qa(t)] (∆q characterizes the distance
between the stable and unstable states of the system).
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3. GENERAL EXPRESSION FOR THE ESCAPE RATE

The form (5) is advantageous as it immediately gives the current j(q, t) from the occupied region (−∞, q]. Well
behind the basin boundary, where Q = q − qb(t) � lD, diffusion can be disregarded. In this range the current is
convective. It gives the instantaneous escape rate, and we will call it escape current. With q̇ ≈ q̇b + µbQ in the
absence of noise, we have j(q, t) ≈ µb(t)ρ(q, t)Q at a given distance Q from qb(t). Disregarding the term ∝ p2/D
in ρ̃ for Q � lD, we obtain from Eq. (5)

j(q, t) = µb(t)ED1/2

∫ ∞

0

dx e−x exp[−s(φd)/D]. (7)

Here, φd and td ≡ td(Q, t) are given by the equations

φd = ΩF ln[xκb(td, t′)], κb(td, t) = lD/2Q. (8)

In the whole harmonic range j depends on the observation point Q only in terms of the delay time td, which
shows how long it took the system to roll down to the point Q, ∂td/∂Q = −1/µb(td)Q. We note that µb(t) can
be negative for a part of the period, leading to reversals of the instantaneous current.

The escape rate W is given by the period-averaged escape current j(q, t) and is independent of q. From
Eq. (7)

W =
µ̄b

2π
ED1/2

∫ 2π

0

dφ exp[−s(φ)/D]. (9)

Eqs. (7) and (9) provide a complete solution of the Kramers problem of escape of a modulated system and
reduce it to finding the function s. They are similar in form to the expressions for the instantaneous and average
escape rates for comparatively weak modulation, |s| � R, where s was obtained explicitly.12

Unless the modulation is very weak or has a high frequency, for small noise intensity max s ∼ |min s| � D.
In this case the major contribution to the integrals in Eqs. (7), (9) comes from the range where s is close to its
minimum sm reached for some φ = φm. Then the escape current j(q, t) sharply peaks as function of time once
per period when φd ≡ φd(t) = φm. This means that escape events are strongly synchronized. As we show, both
j(q, t) and W are determined not by the global shape of s(φ), but only by the curvature of s(φ) near φm.

4. DISTRIBUTION MATCHING

4.1. Intrawell distribution
To find j(q, t) we match Eq. (5) to the distribution ρ(q, t) close to qb(t) but well inside the attraction basin,
−Q � lD. For small D this distribution can be found, for example, by solving the FPE (1) in the eikonal
approximation, ρ(q, t) = exp[−S(q, t)/D]. To zeroth order in D, the equation for S = S0 has the form of the
Hamilton-Jacobi equation ∂tS0 = −H for an auxiliary nondissipative system with the Hamiltonian18

H(q, p; t) = p2 + pK(q, t), p = ∂qS0. (10)

The Hamiltonian trajectories q(t), p(t) of interest for the problem of fluctuations away from the metastable state
qa(t) start in the vicinity of this state. The initial conditions follow from the Gaussian form of ρ(q, t) near qa(t),
with S0 = [q − qa(t)]2/2σ2

a(t).

To logarithmic accuracy, the escape rate is determined by the probability to reach the basin boundary
qb(t), i.e., by the action9 S0

(
qb(t), t

)
. The Hamiltonian trajectory qopt(t), popt(t), which minimizes S0

(
qb(t), t

)
,

approaches qb(t) asymptotically as t → ∞. This is a heteroclinic trajectory of the auxiliary Hamiltonian system,
it is periodically repeated in time with period τF . The coordinate along this trajectory qopt(t) is the most
probable escape path (MPEP) of the original system.

Close to qb(t), the Hamiltonian equations for q(t), p(t) can be linearized and solved. On the MPEP

popt(t) = −Qopt(t)/σ2
b (t) = κ−1

b (t, t′)popt(t′), (11)
S0

(
qopt(t), t

)
= R − Q2

opt(t)/2σ2
b (t),
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where Qopt(t) = qopt(t) − qb(t). The quantity R = S0

(
qopt(t), t

)
t→∞ is the activation energy of escape.

The surface S0(q, t) is flat15 for small Q−Qopt. This is a consequence of nonintegrability of the dynamics with
Hamiltonian (10). The action surface touches the surface Sb(q, t) = R − Q2/2σ2

b (t) on the MPEP, Q = Qopt(t).
Away from the MPEP S0(q, t) > Sb(q, t), and therefore the function ρb(q, t) = ρ(q, t) exp[Sb(q, t)/D] is maximal
on the MPEP.

4.2. Matching the exponents and the prefactors

We match on the MPEP ρb found in the eikonal approximation to the maximum of ρb found from Eq. (5) near
the basin boundary. For |sm| � D and −Q � lD, the integral over p in Eq. (5) can be evaluated by the steepest
descent method. The integrand is maximal if p = −Q/σ2

b (t) and s is minimal for this p, i.e., φ(p, t) = φm and
s = sm. If the extremum lies on the MPEP for one time, s = sm for all times, because φ(popt(t), t) =const. Then
from Eq. (5)

ρ(q, t) = Eb(t) exp[−Sb(q, t)/D],

Eb(t) = ẼD−1/2
[
σ2

b (t) + Ω2
F s′′m p−2

opt(t)
]−1/2

, (12)

where Ẽ = E(2πD)1/2 exp[(R − sm)/D], and s′′m ≡ [d2s/dφ2]φm . From Eqs. (11), (12), not only the exponents,
but also their slopes coincide along the MPEP for the boundary-layer and eikonal-approximation distributions.

The function Eb(t) should match on the MPEP the prefactor of the eikonal-approximation distribution ρ =
exp(−S/D), which is given by the term S1 ∝ D in S. On the MPEP, z = exp(2S1/D) obeys the equation19

d2z/dt2 − 2d(z ∂qK)/dt + 2zp∂2
qK = 0, (13)

where q = qopt(t), p = popt(t). The initial condition to this equation follows from ρ(q, t) = z−1/2 exp(−S0/D)
being Gaussian near qa(t), which gives z(t) → 2πDσ2

a(t) for t → −∞. Close to qb(t), from Eq. (13) z(t) =
D[z1σ

2
b (t) + z2p

−2
opt(t)], where z1,2 are constants.13 We note that the term ∝ z1 was disregarded by Lehmann et

al13 .

Remarkably, z−1/2(t) is of the same functional form near qb(t) as Eb(t) in Eq. (12). Thus, with an appropriate
choice of constants E , s′′m the prefactors in ρ(q, t) as given by the eikonal and the boundary-layer approximations
match each other.

5. INSTANTANEOUS ESCAPE RATE

Explicit expressions for the escape rate in the regime of strong synchronization can be obtained for comparatively
weak or slow modulation, where s′′m ∼ |sm| � D but

Ω2
F s′′m � R. (14)

The results for D � |sm| � R should coincide with the results12 for moderately weak driving, which were
obtained in a different way. We have verified this by finding s′′m from Eq. (13) by perturbation theory in the
modulation amplitude A.

5.1. Adiabatic regime

Condition (14) can be met for large A, where s′′m ∼ R, provided the modulation frequency is small, ωF tr ∼ ΩF � 1
(adiabatic modulation). Here, the MPEP is given by the equation q̇opt = −K

(
qopt, tm

)
, with tm found from

the condition of the minimum of the adiabatic barrier height ∆U(t) = U
(
qb(t), t

) − U
(
qa(t), t

)
. The activation

energy R = ∆Um ≡ ∆U(tm).

The value of s′′m can be obtained from z(t) or by matching the adiabatic intrawell distribution ∝ exp[−U(q, t)/D]
and the boundary layer distribution (5) in the region |Q| � lD and Ω2

F s′′m � µb(tm)Q2 for |t − tm| � τF . Both
approaches give Ω2

F µ2
bs

′′
m = ∆Üm, where µb and ∆Üm ≡ ∂2

t ∆U are calculated for t = tm.
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The form of j(q, t) depends on the parameter Ω2
F s′′m/D. When it is small, the term ∝ p−2

opt in Eb(t) [Eq. (12)]
and z(t) is also small away from the diffusion region around qb. Then z = 2πDσ2

a(tm). The pulses of j(q, t) are
Gaussian,

j(q, t) =
|µaµb|1/2

2π
e−R/D

∑
k
e−(t−tk)2∆Üm/2D (15)

[µa,b ≡ µa,b(tm)]. They are centered at tk = tm +kτF , with k = 0,±1, . . . [we disregard the delay ∼ µ−1
b ln(Q/lD)

in tk]. Eq. (15) corresponds to the fully adiabatic picture, where the escape rate is given by the instantaneous
barrier height ∆U(t).

5.2. Nonadiabatic regime

The current pulses have a different form for Ω2
F s′′m/D � 1. Because p−2

opt(t) ∝ κ2
b(t, t

′) exponentially increases
in time near qb, the term ∝ p−2

opt in Eb and z becomes dominating before the MPEP reaches the diffusion region
|Q| ∼ lD. Then Eqs. (7), (12) give

j(q, t) =
µb(t)ẼD1/2

ΩF

√
s′′m

e−R/D
∑∞

k=−∞ xke−xk , (16)

xk = x0 exp(2πk/ΩF ), x0 = popt(t)Q/D.

Note that here popt(t) can be smaller than lD/σ2
b (t).

Eq. (16) does not require the adiabatic approximation, even though its range of applicability overlaps with
the range of adiabatic modulation ΩF � 1. The form of the current pulses (16) is totally different from that
of the diffusion current −D∂Qρ on the basin boundary Q = 0, which was studied by Maier and Stein14 and
Lehmann et al.13 This current is given by Eqs. (5), (12). The regime Ω2

F s′′m/D � 1, where the current has the
form (15), cannot be studied in the approximation13 at all. The ratio Ẽ/

√
s′′m = ΩF z

−1/2
2 can be obtained by

solving Eq. (13).

For ΩF � 1 the current (16) is a series of distinct strongly asymmetric peaks, with xk ≈ exp[−(t − kτF −
tm)µb(tm)] near the maximum. The transition between the pulse shapes (15) and (16) occurs for Ω2

F s′′m/D ∼ 1.
It is described by Eq. (7) with E = (2π)−1D−1/2|µa/µb|1/2 exp[−(R − sm)/D]. We note that, for ΩF � 1, the
shape of current pulses in the whole range (14) is the same as for weak modulation,20 but the parameters depend
on A,ωF differently.

With increasing ΩF the peaks of j (16) are smeared out and the escape synchronization is weakened. For
ΩF � 1 it disappears (s′′m rapidly decreases with ωF for large ΩF ).

6. PERIOD-AVERAGED ESCAPE RATE

In the range s′′m ∼ |sm| � D, the period-averaged escape rate (9) is

W = ν exp(−R/D), ν = µ̄bẼD1/2/2π
√

s′′m. (17)

The prefactor ν can be expressed in terms of z2. Formally, the result has the same form as the expression13

obtained before. However, Eq. (17) applies for |sm| � D even where the theory13 does not apply.

The asymptotic technique developed in this paper allows obtaining the prefactor ν in several limiting cases.
For comparatively weak modulation, D � |sm| � R, Eqs. (13), (17) give the same result as in the method12

for moderately weak driving. Since the theory for moderately weak driving12 covers the whole range |sm| � R,
a transition from the Kramers limit of no modulation to the case of arbitrarily strong modulation is now fully
described.

In the whole range where the adiabatic approximation applies, ΩF � 1, we obtain

ν = (2π)−3/2|µaµb|1/2D1/2ωF (∆Üm)−1/2 (18)

where µa,b are calculated for t = tm. Interestingly, ν (18) is independent of the modulation frequency.
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6.1. Scaling near the bifurcation point
Close to the bifurcational value of the modulation amplitude A = Ac where the metastable and unstable states
qa,b(t) merge, the escape rate displays system-independent features. As shown earlier,25 the activation energy
R of the system scales as R ∝ ηξ, where η ∝ (Ac − A) is the distance to the bifurcation point along the
amplitude axis. Three scaling regimes have been identified for R. With increasing modulation frequency ωF or
decreasing η, the critical exponent ξ changes from ξ = 3/2 for stationary systems (adiabatic scaling) to ξ = 2
(locally nonadiabatic scaling) and then back to ξ = 3/2 (high-frequency scaling). Below we discuss scaling of
the prefactor ν in the three regimes.

We start the analysis with the limiting case of slow modulation, ωF tr � 1. In this case the adiabatic stable
and unstable states qad

a,b(t) are given by the equation K(qad
a,b(t), t) = 0. The adiabatic critical amplitude Aad

c is
determined by the condition that the states qad

a,b(t) touch each other. This happens once per period, and we set
t = kτF (k = 0,±1, . . .) at this time moment. We also set qad

a,b(kτF ) = 0 for A = Aad
c . Expanding the Langevin

equation of motion around this point, we obtain

q̇ = αq2 + βδAad − αγ2(ωF t)2 + f(t), (19)

where α = (1/2)∂2
qK, β = ∂AK, γ2 = −(2αω2

F )−1∂2
t K. Here all derivatives are evaluated at q = t = 0, A = Aad

c ;
γ is independent of ωF ; it is assumed (without loss of generality) that α > 0; δAad = A − Aad

c . The force f(t) is
a zero-mean white Gaussian noise, 〈f(t)f(t′)〉 = 2Dδ(t − t′).

The adiabatic approximation applies provided not only tadr ωF � 1, but also ∂tt
ad
r � 1, where tadr (t) =

(1/2)[(αγωF t)2 − αβδAad]−1/2 is the adiabatic relaxation time. The relaxation time strongly depends on t and
diverges for A → Aad

c and t → 0. The inequality ∂tt
ad
r � 1 is therefore the most restrictive condition on

adiabaticity; it requires that tadr � tl, where tl = (αγωF )−1/2 is a new dynamical time scale.

Sufficiently far from Aad
c where the adiabatic approximation still applies (i.e. tadr � tl, or, equivalently, ωF �

|βδAad|/γ), Eq. (18) is simplified. In the adiabatic regime21–26 the barrier is ∆U(t) ∝ [|δAad|+acω
2
F (t− tm)2]3/2

(here ac ∼ Aad
c ), and |µa,b| ∝ |δAad|1/2. Then, from Eq. (18), the prefactor in the adiabatic limit scales as

ν ∝ |δAad|1/4.

The critical slowing down of the system motion makes the adiabatic approximation inapplicable in the region
|δAad|/Aad

c
<∼ ΩF , where the condition tadr � tl is violated. In this range we rewrite Eq. (19) in the form25

Q̇ = Q2 − τ2 + 1 − η + f̃(τ), (20)

where Q = αtlq, τ = t/tl, Q̇ = dQ/dτ , f̃(τ) = (γωF )−1f(tlτ). The control parameter

η = β(γωF )−1(Ac − A), Ac ≈ Aad + γωF /β, (21)

is the distance to the true bifurcation point Ac, which is shifted from Aad
c because of the slowing down of the

system and the associated with it delayed response. For small driving frequencies, ωF tr � 1, where the local
expansions (19), (20) apply, the shift in the bifurcational amplitude is linear in frequency, as seen from Eq. (21).

The adiabatic approximation applies for η � 1, leading to R ∝ (η−1)3/2. In contrast, for η <∼ 1 the activation
energy scales25 as R ∝ η2. In this region the most probable escape path Qopt(τ), Popt(τ) corresponding to Eq. (20)
is given by25

Qopt(τ) = τ − η

∫ τ

0

dτ1

[
1 −

√
2e−τ2

1

]
eτ2−τ2

1 , Popt(τ) = ηe−τ2
/
√

2. (22)

Using these expressions in Eq. (13), we obtain

z(τ) = 4πD̃

∫ τ

−∞
dτ1 exp(2τ2 − 2τ2

1 ). (23)

Here D̃ = α1/2(γωF )−3/2D is the noise intensity corresponding to the scaled force f̃(τ). This gives

ν = ν0D
1/2|δA|−1ω

5/4
F , δA = A − Ac, (24)
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Figure 1. The prefactor ν in the average escape rate W (17). The results refer to a Brownian particle with K(q, t) =
q2 − 1/4 + A cos(ωF t), ωF = 0.1, and describe escape in the regime of strong synchronization, where ν ∝ D1/2. In panel
(a), the solid line for small A shows the scaling ν ∝ A−1/2.12 In panels (a) and (b), the solid lines for small δA = A−Ac

show the scaling (24). The dashed line in panel (a) shows the result of the numerical solution of Eq. (13). The squares
and crosses show the results of Monte Carlo simulations for R/D = 5 and R/D = 6, respectively.

where ν0 = (64π7ωF )−1/4|∂2
t K ∂2

qK|1/8/|∂AK|.
From Eq. (24), the prefactor ν ∝ |δA|−1 sharply increases as the modulation amplitude approaches Ac. This

is qualitatively different from the decrease of ν in the adiabatic approximation. The result agrees with the
numerical solution of Eqs. (13), (17) for a model system shown in Fig. 1. The calculations in a broad range of
A are also confirmed by Monte Carlo simulations.

For high frequencies, ΩF � 1, escape is not synchronized by the modulation. The prefactor in the escape
rate is ν = |µ̄aµ̄b|1/2/2π, it is independent of the noise intensity D. Near the bifurcation point it scales as in
stationary systems,21, 22 where ν ∝ |δA|1/2 and R ∝ |δA|3/2. We note that very close to the bifurcation point
modulation is necessarily fast, because |µ̄a,b| → 0 for A → Ac. Therefore the prefactor always goes to zero for
A → Ac. However, for small ωF the corresponding region of δA is exponentially narrow.25

7. RESULTS FOR A MODEL SYSTEM

To illustrate the findings, we consider a simple model system of a Brownian particle in a cubic potential subject
to sinusoidal modulation. The equation of motion is of the form

q̇ = K(q, t) + f(t), K = q2 − 1/4 + A cos(ωF t). (25)

7.1. The adiabatic regime

The adiabatic stable and unstable states of the system (25) are

qad
a,b(t) = ∓ [1/4 − A cos(ωF t)]1/2

, (26)

and the adiabatic critical amplitude is Aad
c = 1/4. The adiabatic barrier height is

∆U(t) = (4/3) [1/4 − A cos(ωF t)]3/2
. (27)

Its minimum ∆Um = (4/3)(1/4 − A)3/2 is reached for tm = kτF (here and below k = 0,±1, . . .). The adiabatic
optimal escape trajectories are centered around tm and have the form

qad
opt(t) = (1/4 − A)1/2 tanh

[
(1/4 − A)1/2t

]
. (28)
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The adiabatic relaxation rates are
µa,b(tm) = ∓2(1/4 − A)1/2. (29)

The reduced curvature Ω2
F s′′m of the function s(φ) in the boundary-layer distribution at φm = ωF tm is given

by µ−2
b (tm)∆Üm, which becomes

Ω2
F s′′m = (1/2)Aω2

F (1/4 − A)−1/2. (30)

Therefore the condition (14) of strong but slow modulation, which must hold for the pulses of the escape current
to be of Gaussian shape, takes the form

ω2
F � (8/3)(1/4 − A)2/A. (31)

It becomes more and more restrictive for the modulation frequency as the modulation amplitude A approaches
the adiabatic bifurcational value 1/4.

The prefactor ν of the period-averaged escape rate in the adiabatic limit for sufficiently strong modulation is
given by Eq. (18). For our model it has a simple explicit form

ν = (2π3/2)−1D1/2(1/4 − A)1/4A−1/2. (32)

As expected, ν ∝ A−1/2 for small amplitude, whereas close to the adiabatic bifurcation point ν ∝ (Aad
c −A)1/4.

7.2. Locally nonadiabatic regime

As explained in Section 6, sufficiently close to the bifurcation point the adiabatic approximation breaks down. As
a result, the bifurcation point Ac shifts away from Aad

c (to higher amplitude, in our case). Close to Ac the pulses
of escape current become strongly asymmetric, even though the modulation frequency is small. The scaling of
the prefactor in the period-averaged escape rate also changes dramatically, from decreasing (as in the adiabatic
approximation) to increasing for A → Ac. From Eq. (24)

ν = (64
√

2π7)−1/4D1/2|δA|−1ω
5/4
F . (33)

The results on the prefactor for the discussed model system are shown in Figure 1. They refer to the
modulation frequency ωF = 0.1 (the relaxation time in the absence of modulation is t

(0)
r = 1/2). The dependence

of ν/
√

D on the modulation amplitude A is shown in panel (a). The solid line for small A represents Eq. (32),
which also agrees with the results12 for moderately weak modulation. The solid line close to the bifurcational
amplitude Ac  0.29 is given by Eq. (33). The dashed line for intermediate values of A is given by Eq. (17)
with Ẽ/

√
s′′m evaluated by numerically integrating Eq. (13). The analytical results agree with the results of

simulations represented by squares and crosses. Panel (b) shows in more detail the locally nonadiabatic scaling
ν ∝ |δA|−1 in the region near Ac.

The simulations have been done using the standard second-order integration scheme27 for stochastic differen-
tial equations. The period-averaged escape rate was found as a reciprocal of the average dwell time of particles
leaving the attraction basin. For each set of parameter values we accumulated ∼ 105 escape events. The pref-
actor of the escape rate ν was evaluated as ν = W exp(R/D). The values of activation energy R were obtained
independently by solving the appropriate instantonic problem. We checked previously28 that these value agree
extremely well with Monte Carlo simulations. For each value of A the noise intensity D was adjusted so as to
keep R/D fixed at R/D = 5 (squares) and R/D = 6 (crosses).

8. CONCLUSIONS

The results of this paper and the previous work allow us to draw the general scheme of the dependence of the
rate of activated escape on the modulation parameters. This scheme is sketched in Fig. 2.

The range of low modulation amplitude corresponds to the case where the modulation-induced change of
the activation energy of escape |sm| is small compared to the noise intensity D. In this case the major effect of
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Figure 2. Different regions of escape behavior in modulated overdamped systems depending on the modulation frequency
ωF and amplitude A; t

(0)
r is the relaxation time in the absence of modulation.

modulation is effective heating of the system (which depends on energy, for underdamped systems7, 29). Escape
is not synchronized in this regime.

Synchronization first emerges for stronger driving, where |sm| � D. Here there is a broad range of modulation
amplitudes where the activation energy change is linear in the amplitude, |sm| ∝ A. Strong synchronization
occurs for small frequencies,12 where ωF t

(0)
r � 1. Here, the escape current has peaks with width much smaller

than the modulation period. The prefactor in the period-averaged escape rate scales as (D/A)1/2. For high
frequencies |sm| exponentially decays with ωF .

The synchronization persists for higher modulation amplitudes. The shape of the peaks of escape current is
Gaussian for Ω2

F |sm| � D and is strongly asymmetric and non-Gaussian for higher frequencies. For very high
modulation frequencies exponentially strong synchronization of escape disappears. The escape current is still
modulated in time, of course, but it does not have a shape of sharp narrow peaks even for small noise intensity.

Of special interest is the bifurcation region. Here the adiabaticity is broken. For small modulation frequencies
the escape current has the form of strongly asymmetric narrow peaks. The activation energy of escape scales
with the distance to the bifurcation amplitude Ac as (Ac − A)2, whereas the prefactor in the period-averaged
escape rate is ∝ (Ac − A)−1.

In conclusion, we have obtained a general solution of the problem of noise-induced escape in periodically
modulated overdamped systems. With increasing modulation frequency, the pulses of escape current change
from Gaussian to strongly asymmetric; for large ωF current modulation is smeared out. The prefactor ν in
the period-averaged escape rate is a strongly nonmonotonic function of the modulation amplitude A for low
frequencies. It first drops with increasing A to ν ∝ (D/A)1/2,12 then varies with A smoothly,13, 14 and then
sharply increases, ν ∝ D1/2/(Ac − A) near the bifurcation amplitude Ac. We found three scaling regimes near
Ac, where ν ∝ (Ac − A)ζ with ζ = 1/4,−1, or 1/2. The widths of the corresponding scaling ranges strongly
depend on the modulation frequency.

We are grateful to V.N. Smelyanskiy for the discussion. This research was supported in part by the NSF
DMR-0305746.
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