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ABSTRACT 

While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale 
structures, present designs embody innovative approaches that directly exploit the fundamentally different material 
properties of a new technology at the micro- and nano-scale.  Direct, hands-on experience with the emerging technology 
gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new 
applications that enlarged the customer base for the new technology.  Sandia’s early commitment to develop complex 
microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool 
kit and a shared awareness of multiple approaches to achieve the multiple goals. 
 
As with any emergent technology, Sandia’s program benefited from interactions with the larger technical community.  
However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of 
materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of 
reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied 
on three key elements.  The first was people: a mix of mechanical and semiconductor engineers, chemists, physical 
scientists, designers, and numerical analysts.  The second was a unique facility that enabled the development of custom 
technologies without contaminating mainline product deliveries.  The third was the arrival of specialized equipment as 
part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness 
Technology Transfer Act of 1989.  Underpinning all these, the program was guided and sustained through the research 
and development phases by accomplishing intermediate milestones addressing direct mission needs.   
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1. INTRODUCTION  
The first applications of disruptive technologies often are driven by analogies to established technologies.  This was true 
of the use of iron for bridges; it is true for the use of composite materials in modern aircraft; and it is true for the 
development of microsystem technology at Sandia National Laboratories.  Sandia National Laboratories has long 
experience not only with microelectronics but also with precision mechanical components.  It should be noted that 
laminar-flow clean room technology was invented at Sandia National Laboratories to assemble intricate and delicate 
mechanisms.  Those mechanical devices of the 1950s required such extremely rigid specifications that contamination by 
dust particles or other contaminants rendered the mechanisms inoperable [1]—thus motivating the development of the 
laminar-flow clean room.  Four decades later, the goal of miniaturizing the same types of mechanical components 
motivated Sandia’s development of integrated microsystems technology. 

As research activity in semiconductor microsystem technology began to blossom in the 1980s, Sandia became interested 
in the possibilities of the emergent microsystem technology.  Initially Sandia was motivated by the possibility of 
miniaturizing macroscopic mechanical components to reduce volume and weight while ideally improving reliability—
where reliability improvement would be addressed through high-level integration that would reduce the number of 
interconnections among a larger number of discrete subcomponents.  This ambitious initial goal required fabricating 
multiple structural levels of patterned polysilicon separated by sacrificial layers of silicon dioxide at levels of process 
complexity far beyond the initial state of the art.  Adding additional structural layers required overcoming numerous 
technical challenges, such as residual stresses from differential thermal expansion between layers during fabrication.  

                                                 
1 Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the 
United States Department of Energy’s National Nuclear Security Administration 
 under contract DE-AC04-94AL85000. 
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Later, as Sandia designers and engineers became more familiar with the possibilities of multi-level sacrificial silicon 
surface micromachining, they began to combine the micromachine technology with other technologies such as optics 
and photonics to achieve the high-level integration that initially motivated the early investigations of microsystem 
technology several decades previously. 

A historical analogy provides a useful context.  In 1709, a new disruptive technology emerged:  the coke-fueled blast 
furnace which helped create the British Industrial Revolution.  This new technology dramatically lowered the cost of 
cast iron, which had previously been too expensive for use in larger structures.  The first foundry was located near the 
river Severn.  By coincidence, in the early eighteenth century, the only way to cross the river Severn was by ferry.  The 
local industries needed a more reliable crossing.  As a result, when cast iron became affordable, local entrepreneurs 
proposed in 1773 to build a durable iron bridge to connect those local industries.  The bridge was the first of its kind and 
thus the construction had no precedent.  Lacking an understanding of the material properties of cast iron, the bridge was 
severely over engineered.  Lacking any other insights, known carpentry techniques were used to create the structure.  As 
a result, it required 379 tons of iron by the time it was completed six years later in 1779. [2] 
 
As bridge builders developed greater expertise with iron as a construction material, a similar bridge was built over the 
river Severn in 1818 roughly a mile downstream from the first iron bridge.  The new Coalport bridge required half the 
amount of cast iron as the original Iron Bridge.  This dramatic reduction in material costs was the result of design 
insights gained from previous structures that exploited the unique properties of coke pig iron.   
 
As we look back at the development of microsystem technology at Sandia National Laboratories, we encounter the same 
human limitations in creating a disruptive technology.  Similar to the first iron bridge, the development of microsystems 
technology required patient capital for its development; it required new design tools based on an understanding of the 
properties of the new materials; its first applications were driven by direct analogy to existing macroscopic components, 
and it required a new way of thinking to surface the unique advantages of the new technology.  Familiarity with the 
emergent technology in turn drove technological evolution and led to its application to resolve problems far beyond 
those that drove the initial investigations. 

 
2. The Birth and Rebirth of MEMS Technology 

 
In 1964 Dr. Harvey Nathanson of Westinghouse Research Labs in Pittsburg produced the first batch-fabricated Micro-
Electro-Mechanical System (MEMS). [3]. This work generated the first MEMS patent [4] awarded in 1968 for a 
“resonating gate transistor” which structurally consisted of a conducting cantilever above a silicon substrate.  Even in its 
earliest form, the early MEMS technology offered batch fabrication that required no additional pick-and-place assembly 
(the components came out of the batch-fabrication process completely assembled at the micro level), included energy 
conversion (electrical to mechanical and vice versa), and attempted to generate system solutions to problems of 
commercial interest. For a variety of technical and performance reasons, the initial Westinghouse devices did not create 
a commercial market. [5]   Instead, the nascent semiconductor industry pursued transistors and integrated circuits—
which already had achieved a sustaining market and showed great opportunity for future market growth. As a result, the 
potential advantages of MEMS technology went unrealized for almost two decades. 

   
In the early 1980s, workers at the University of California at Berkeley and the University of Wisconsin revived interest 
in MEMS technologies by demonstrating the advantages of polysilicon structural layers with sacrificial oxide layers. In 
this technology, the components are built up on a semiconductor substrate using standard techniques before a mask-less 
post-processing release step etches away sacrificial layers, allowing the structural layers to move and later to rotate.  
 
By 1984, a group at the University of California-Berkeley had demonstrated the integration of polysilicon 
microstructures with NMOS electronics, which won the Best Student Paper Award for the International Electron 
Devices Meeting of the Institute of Electrical and Electronics Engineers. [6] Achieving a Best Paper Award at the 
signature conference of the Electron Devices Society of the Institute for Electrical and Electronics Engineers sparked 
renewed interest in MEMS technology and brought MEMS technology back to life.   
 
An essential development in the evolution of MEMS technology was the awareness that a fundamental understanding of 
material properties at the microscopic level was needed to advance the technology.  In that regard, the best student paper 

Proc. of SPIE Vol. 8031  80311E-2



 
 

 
 

of the 1987 IEDM was awarded to the Berkeley group for measuring thermal properties of the polycrystalline silicon 
used for the early micromachines [7].     
 
The ambitious Berkeley group began to develop other microscopic analogs to macroscopic devices.  In 1988 they 
developed the first rotary electrostatic side drives motor [8] based on movable pin joints, gears, springs, cranks, and 
slider structures.  The motor is not assembled from individual components. Instead these complex components were built 
up by the same processing steps, allowing the structural layers to move and rotate. These demonstration devices were not 
able to drive a mechanical load.  Such advances would require greater technology than available to the Berkeley group. 

 
3. Silicon Micromachining Development at Sandia 

 
3.1 The Origins of Micromachining at Sandia National Laboratories 

 
 As interest renewed in silicon micromachining in the 1980s, Sandia’s mechanical engineers began considering 
microsystems technology as an option for miniaturizing critical mechanical functions.  Because Sandia had a functioning 
microelectronics fabrication facility with full-flow CMOS technology that delivered qualified product, Sandia’s 
mechanical engineers began to discuss with their microelectronics colleagues whether Sandia’s silicon processing 
technology could be exploited to fabricate advanced micromachines to replace macroscopic mechanical components.  
Sandia’s cleanroom at the time was configured in a ballroom-style layout and thus could not accept new processes or 
new process chemicals without contaminating their existing CMOS production process.  Also at the same time Sandia 
was totally committed to production deliveries for a major defense system. Lacking internal support, Sandia’s 
mechanical engineers began to collaborate with workers at the University of New Mexico to investigate silicon 
micromachining for accelerometers and switches.  
 
Three major events led to the emergence of a major Micromachining activity at Sandia.   
1. Sandia received Congressional Approval to create the Microelectronics Development Laboratory, which began 

operations in 1989.  This new facility was configured in a finger-and-chase layout with the unique property that 
each clean room bay (the finger) could be separated from the rest of the clean room by sliding glass doors on each 
end to prevent cross contamination between distinct process areas.  This design permitted the introduction of 
materials and processes into the fab that would be a contamination risk in a ballroom-style clean room.  This design 
resulted in a facility where high-yield standard flow manufacturing could exist with research and development of 
novel microsystems technologies.  

2. The second was the end of the cold war.  The resultant drop in Sandia’s integrated-circuit production for national 
security applications freed capacity previously devoted to product and thus expanded the availability of Sandia’s 
semiconductor facilities for research and development.   

3. The final element was the passage by Congress of the National Competitiveness Technology Transfer Act of 1989.  
This legislation assigned to DOE National Laboratories the mission of supporting US industrial competitiveness and 
funded joint research between US companies and National Laboratories under Cooperative Research and 
Development Agreements (CRADAs).  This led to over $100M of cooperative R&D in semiconductor research with 
US industry and an influx of specialized equipment from industry, valued at over $40M, in support of the joint 
R&D.  As we describe below, this influx of equipment and supplies enabled additional partnerships with university 
and industrial researchers to further advance Sandia’s ability to develop custom micromachining technology. 

. 
3.2 Early Development at Sandia 

 
Following a seminar at Sandia by Professor Mueller of the Berkeley group, Sandia’s semiconductor fab management 
identified internal funding to support Sandia’s initial attempts at micromachining.  While excited by the possibilities of 
this emergent technology, Sandia microelectronics engineers realized they could not sustain the needed long-term 
development by technology push alone.  Thus, their first efforts were devoted to identifying internal customers who 
might benefit from the new technology (customer pull).  The microelectronics engineers found such an internal customer 
in Sandia’s precision mechanical components group—the same group which they were not able to support in the earlier 
facility.  To be relevant to Sandia’s mission, the internal customers demanded one technical advance:  they explicitly 
required the technology be capable of performing useful work.  In other words, Sandia had to develop linkages between 
electrostatic motors and gears—each of which had been demonstrated by other groups independently but which had 
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never been integrated into a single system that could perform useful work. This experience only reinforces the 
importance of carefully choosing intermediate goals in the development of an emergent technology. [9] 

   
The Sandia engineers confronted the same obstacles as those that confronted the other pioneers in silicon 
micromachining.  In those days, silicon technology relied on the deposition and patterning of multiple fabrication layers 
that conformed to the topography of the patterned layers that preceded it.  In Figure 1 we demonstrate an electron 
micrograph of the polysilicon technology common to the CMOS fabrication of the mid-1980s.  The CMOS technology 
at the time was limited to only a few layers of interconnections because the nonplanarity of the top surface increased 
with the number of layers.  In the technology shown in Figure 1, the top level of metallization had to cross steps with 
heights of 0.8μm—which could lead to long-term reliability problems from stress voiding and electromigration [10].  
The non-planarity of additional layers was a major issue that limited the complexity of all integrated circuits at the time.   

 

 
 

Figure 1. Electron micrograph of 1980s-vintage Polysilicon-Gate CMOS Integrated Circuit.  The micrograph illustrates 
cumulative topography variations of 0.8micrometers at the uppermost level of a two-level interconnection circuit.   

 
Knowing that the future of Sandia’s emerging microsystems technology depended on developing a working 
microengine, Sandia’s semiconductor engineers entered into a partnership with Sandia’s precision mechanical engineers.  
The partnership between mechanical and semiconductor engineers was essential to moving the technology forward to 
meet the mandated internal technology relevance criterion.   

 
While Sandia already employed subject-matter experts in silicon-integrated-circuit fabrication and precision mechanical 
engineering, the program made a major advance when it brought in a new staff member from the University of 
Wisconsin whose Ph.D. thesis on micromachining gave him direct experience with low-stress polycrystalline structural 
layers.  These insights became critical to Sandia’s ability to create significantly more complex mechanical structures 
than the two-level structures that characterized the state of the art in mechanical complexity at the time.  

 
To go beyond layout options available from semiconductor circuit layout programs, Sandia applied the software program 
Vellum on a Macintosh platform to design involute gears for the photolithographic masks needed to realize the gear and 
linkages.  [Later, the design package migrated to AutoCAD.]   Involute gears are the most commonly used system for 
gearing today.  In an involute gear the two-dimensional profiles of the teeth are involutes of a circle so that contact 
occurs at a single instantaneous point and the angular velocity ratio between two gears of a gearset remains constant 
throughout the mesh.  The inability to planarize the steps meant that the gear teeth had to be trimmed to prevent 
interfering with the non-planar linkages (Figure 2).  As the goal of this initial project was to demonstrate proof of 
principle, the lack of optimized gear teeth was not seen as a limitation.  No sooner was the first microengine printed 
using a linear actuating motor than Sandia researchers stumbled across a major limitation of working at the microscale:  
namely, stiction or sticky friction.  Unlike steam locomotives, in which the drive actuator could rely on the inertia of the 
driving wheels, the drive gear for the microengine had to be driven by two orthogonal linear actuators operating in 
quadrature because the microgear did not have sufficient momentum to continue beyond the dead spot that occurred 
when the actuator was aligned with the radius of the gear and thus provided no torque.   This first successful 
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demonstration is illustrated in Figure 2 below.  [11] Note the non-planarity of the step coverage for the gear linkage and 
the need for quadrature drive (two drive linkages at 90 degrees to each other) from each of two electrostatic engines. 
 

 
 
 

Figure 2.  Electron Micrograph of the Functioning Gears and Linkages Fabricated with Non-Planarized Micromachine 
Technology using Non-Planarized Polycrystalline Silicon as a Structural Material.  Note the non-planarity of the step 
coverage for the gear linkage and the need for quadrature drive from the electrostatic engines. 

 
While silicon surface micromaching was a major area for investigation, Sandia’s semiconductor engineers were also 
examining other micromaching technologies.  Sandia’s first bulk micromachining technology used KOH solutions to 
anisotropically etch silicon to create through-wafer vias.  The ability to perform KOH etching in the same facility that 
produces CMOS integrated circuits was a testament to the design flexibility of Sandia’s Microelectronics Development 
Lab (presently Sandia’s MESA silicon fab) because potassium is a contaminant in integrated-circuit fabrication that 
produces mobile ions in the silicon-dioxide gates of CMOS transistors.  Mobile ions produce uncontrolled variations in 
the turn-on and turn-off voltages of CMOS transistors as they switch states.  Use of KOH etches allowed Sandia to 
create thin suspended silicon nitride membranes which served as a platform for quartz resonators and pressure sensors. 
[12] Later, KOH etching was replaced by the Bosch process for Reactive Ion Etching to achieve the same kinds of 
through-wafer vias for other applications.  Still, these early experiences with KOH introduced thought patterns that 
would prove useful as Sandia evolved to integrated microsystems rather from discrete micromachined components. 

 
3.3 Maturing the Technology:  Infrastructure Development 

 
The timing of Sandia’s entry into sacrificial surface micromachining benefited from the rapid introduction of new 
materials and process technology by leading edge semiconductor manufacturers.  The semiconductor industry was 
devoting substantial effort into planarizing the topography of multiple interconnect layers in high-density integrated 
circuits at a time when integrated-circuit technology was beginning to migrate from standard aluminum interconnects 
toward copper metallization.  A Cooperative Research and Development Agreement (CRADA) with the International 
Business Machines Corporation (IBM) brought Sandia tens of millions of dollars of prototype semiconductor processing 
equipment, including chemical-mechanical polishing machines.  While IBM did not share their proprietary recipe for 
CMP for integrated circuits, Sandia was able to apply the scientific resources of a National Laboratory to develop a 
similar technology using IBM’s donated equipment.  While Sandia did not discover CMP, it was the first to apply CMP 
to sacrificial surface micromachining. [13]   
 
The development of in-house chemical-mechanical polishing had three significant benefits.   
 
First, in-house CMP enabled Sandia to advance its CMOS to multiple levels of on-chip interconnections (Fig. 3). 
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Figure 3:  Cross-Sectional Micrograph of Multiple Levels of Interconnection in Sandia’s Integrated-Circuit Technology 
Enabled by Chemical-Mechanical Polishing.  Contrast the planarity of the interconnect levels (the rectangles) with the 
topography of the non-CMP technology illustrated in Figure 1. 

 
Second, this planarization technology was now available to eliminate the topological variations and enable printing of 
true involute gears.  As multilevel silicon surface micromachining evolved, Sandia had to develop techniques to 
planarize not just the 1-micrometer steps for integrated circuits but more demanding two- to three-micrometer step 
heights for micromachined gears and linkages. 
 
Finally, because Sandia was a leader in publicizing the advantages of chemical-mechanical polishing and further was 
extending CMP beyond integrated-circuit applications, Sandia obtained CRADAS that provided the facility with alpha-
test equipment, colloidal suspensions and polishes, polishing pads, and partnerships with universities such as MIT and 
Clarkson University that set new standards for pads and polishing slurries.  Among the outputs of these partnerships was 
a density-characterization die to enable design for manufacturability of chemical-mechanical polishing.  
 
With the advent of chemical-mechanical polishing and as a result of significant effort by Sandia scientists and engineers 
in adjusting the material properties and process recipes for depositing doped silicon dioxide and low-stress 
polycrystalline silicon to minimize residual stress from differential thermal expansion, Sandia was able to develop 
multiple mechanical layers in sacrificial silicon micromachining. Multiple layers were needed to create gear chains for 
actuators because of the low force generated by electrostatic comb drives.  Designers were forced to create extensive 
gear chains (Figure 4) that traded speed for torque.  With these gear chains, electrostatic microengines had to be driven 
to speeds of up to 600,000 revolutions per minute to enable a 1mm travel of a rack and pinion assembly in 1 millisecond. 
 
Thus, while demonstrating proof of principle for micromechanical actuators, the initial attempts at drive motors led to 
immediate concerns for reliability.  Simple calculations indicate that constant use for a 1 billion-cycle lifetime operating 
at 600,000 revolutions per minute would provide an operating lifetime of just under 28 hours—sufficient for some one-
time or even low-duty cycle applications but not for others. 
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Sandia’s next attempt leveraged the expertise of Sandia’s mechanical engineering community.  They devised 
a ratchet and pawl mechanism (as one would find in mechanical watches) to create a tortional ratcheting 
actuator (Figure 8).  The approach greatly minimized the amount of contacting surfaces and thus greatly 
extended the operating lifetimes for mechanical actuators.  This approach also eliminated the need to convert 
linear to rotational forces, as required by earlier electrostatic comb drives, thereby eliminating the need for 
cams and greatly reducing the footprint required for micro-scale engines. The tortional ratcheting actuator is 
still being used in applications where drive force is not the major requirement. 
 
 

 
 

Figure 8.  Tortional Ratcheting Actuator  
 

 
Thermal expansion is a powerful force of nature.  While the thermal expansion of water into steam did not prove useful 
at the microscale, Sandia engineers returned to the concept.  Realizing that even the electrostatic actuator consisted of 
thin polysilicon lines suspended above the silicon substrate—and thus the only heat sinking came from radiation, Sandia 
engineers designed actuators that relied on joule heating from an applied current to cause thermal expansion of the 
suspended polysilicon.  Appropriately designed, this expansion could produce significant force.  Further, by working at 
the microscale, the thermal capacity of the suspended lines was minimized, allowing recover in an acceptable amount of 
time. 
 
 

 
 

Figure 9. V-shaped thermal actuator. 
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As with the other microsystem elements, the thermal actuator provided an additional tool in the toolkit as evidenced by 
its integration with the ratchet and pawl mechanism illustrated in Figure 10. This discussion only addressed the 
challenging evolution of mechanical actuators.  Integration into complete microsystems was a larger challenge. 
 

 
 

Figure 10.  Integration of thermal actuator with ratchet and pawl mechanism to realize a  
ratcheting thermal actuator.  

 
 
As part of its mission as a National Laboratory, Sandia worked to make its microsystem technology available to the 
larger community.  The first step was to train users in Sandia’s microsystem technology through the SAMPLES 
program. [16] This program made the possibilities of the technology known to potential users within Sandia, in the 
university community, and among potential partners in government and industry.  Partly as a result, Sandia licensed its 
silicon surface micromachining  technology to Fairchild Semiconductor Corporation in Portland Maine in 2001.  
 
3.3 Attempts at Integration 
 
Having developed mechanisms to perform useful work, Sandia ambitiously tried to integrate control and data-processing 
circuitry on the same chip as the micromachines.  Sandia had previously developed a wide-range sensor that detected the 
presence of hydrogen gas over six orders of magnitude in concentration.  The integrated hydrogen sensor featured 
extensive on-chip electronics to perform temperature compensation and to interface to the external world through an RS 
232 interface.  [17] Sandia was then challenged to develop on-chip integration for the micromachines with full-flow 
CMOS processes.  An initial brute-force approach is illustrated in Figure 9.   
 

 
Figure 9.  Cross section of Sandia’s initial attempts at an Integrated-MEMS (I-MEMS) technology.  The approach relied 
on fabricating the micromachines in a deep trench.  On the same die, CMOS circuitry was then fabricated on the original 
wafer surface.  Process complexity and limited yield proved this approach impractical. 
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tools can be applied to answer many of the issues that confront those working on emerging technologies.  Often 
technological barriers arise not from an inability to answer questions, but rather from knowing the right questions to ask.  
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