From the birth of plasmonics, the generation of hot carriers in nanostructured metals has been recognized as a fundamental challenge towards effectively harnessing light energy stored in sub-diffraction plasmon modes. However, the observation of hot-carrier transport at metal/dielectric Schottky junctions has reframed this challenge as a distinctive opportunity to facilitate precise control over photochemical and photophysical processes in a manner that is both spectrally selective and spatially precise. To further diversify the array of prospective applicationsin this research area, we showcase the generation of terahertz (THz) electromagnetic waves using the ultrafast formation and interfacial transport of plasmonic hot carriers in hybrid metal/dielectric nano-systems. The introduced hot-carrier-based coherent THz sources mitigate stringent materials requirements pertinent to state-of-the-art technologies for producing THz waves.
An understanding of electron dynamics at interfaces requires access to the angstrom length defining the interface and the femtosecond time scale characterizing their dynamics. In this context, the most precise and general way to remotely measure charge dynamics is through the transient current flow and the associated electromagnetic radiation. Here, we present quantitative measurements of interfacial currents on the subnanometer length and femtosecond time scale by recording the emitted terahertz radiation following optical excitation. We apply this to probe the dynamics of charge transfer in two-dimensional heterostructures, finding that charge relaxation and separation occurs on 100 fs time-scales. We also present new measurements of the twist dependence of these processes. Finally I will also describe new efforts in other classes of 2d materials including the 2d hybrid perovskites.
Femtosecond time-resolved small and wide-angle x-ray diffuse scattering techniques are applied to investigate the
ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense
optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is
observed and the build-up of these fluctuations is measured in real-time. Small-angle scattering measurements reveal
the first steps in the nucleation of nanoscale voids below the surface of the semiconductor and support MD simulations
of the ablation process.
The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements demonstrate that the initial stage of crystal disordering results from inertial motion on a laser softened potential energy surface. These inertial dynamics dominate for the first half picosecond following laser excitation, indicating that inter-atomic forces minimally influence atomic excursions from the equilibrium lattice positions, even for motions in excess of an Å. This also indicates that the atoms disorder initially without losing memory of their lattice reference.
Although the realisation of femtosecond X-ray free electron laser (FEL) X-ray pulses is still some time away, X-ray diffraction experiments within the sub-picosecond domain are already being performed using both synchrotron and laser- plasma based X-ray sources. Within this paper we summarise the current status of some of these experiments which, to date, have mainly concentrated on observing non-thermal melt and coherent phonons in laser-irradiated semiconductors. Furthermore, with the advent of FEL sources, X-ray pulse lengths may soon be sufficiently short that the finite response time of monochromators may themselves place fundamental limits on achievable temporal resolution. A brief review of time-dependent X-ray diffraction relevant to such effects is presented.
Time-dependent x-ray diffraction has been measured from laser-irradiated semiconductor crystals. Laser pulses with 100 fs duration and 800 nm wavelength excite the sample inducing phase transitions. 5 keV x-rays from the Advanced Light Source are diffracted by a sagittally-focusing Si (111) crystal and then by the sample crystal, InSb (111), onto an avalanche photodiode. By detecting individual pulses of synchrotron radiation, which have a duration of 70 ps, the diffracted intensity is observed to decrease because of photoabsorption in a disordered surfaced layer. Rocking curves measured after the laser irradiation show a tail, which results from a strained region caused by expansion of the crystal lattice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.