With this work we propose a guideline for the development of efficient and effective UVC surface disinfection systems for SARS-CoV-2 based on LED technology. The work analyzes the optical and electrical characteristics of state of the art UVC LEDs. From the most recent scientific literature, optical simulations, and laboratory experiments we propose guidelines for the design of high efficiency LED based antiviral system for the treatment of contaminated surfaces. To validate the guidelines two different UVC-LED irradiation systems, for spherical and flat surfaces, have been designed, manufactured and tested. Results indicate a log-4 inactivation of SARS-CoV-2 in few minutes.
Applications of photobiological studies and photochemical reactions are unlocking innovative results both for research and industrial fields. With this work we report on the optical, electronic and thermal design of extreme irradiance incoherent solid-state light sources. State of the art GaN (Gallium Nitride) and AlInGaP (Aluminum Indium Gallium Phosphide) LEDs have been analyzed and selected in order to achieve 450 nm and 940 nm radiation. Different optical approaches have been evaluated: i) geometric lenses, ii) TIR lenses and iii) reflectors. Lighting unit prototypes demonstrate a global efficiency (optical power vs electrical power) of up to 50% and an irradiance over an area of 100x100 mm in excess of 10 W/cm2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.