Non-uniform irradiance on the rear side of bifacial photovoltaic (PV) modules causes electrical mismatch between cells and energy loss across the module. Racking structures increase this non-uniformity through shadows and reflections that vary throughout the day. However, commercial software typically use constant values to estimate mismatch losses in annual simulations. We investigate the impact of torque tube shading and reflection on rear side irradiance mismatch in bifacial PV modules in one-in-portrait (1P) and two-in-portrait (2P) horizontal single-axis trackers with a range of ground albedos over a typical meteorological year in Livermore, California, USA. Irradiance simulations use a version of bifacial_radiance, the National Renewable Energy Laboratory’s python wrapper for the RADIANCE ray tracing software, which we modified for arbitrary 2D irradiance sampling of the module(s) under investigation. For a torque tube reflectivity of 0.745, torque tube reflection accounts for 3.0% and 5.5% of the annual rear insolation in 1P and 2P configurations, respectively, for a 0.2 albedo; or 2.9% and 3.1% for a 0.6 albedo. Torque tube reflection decreases annual rear insolation mismatch from 11.8% to 10.7% in 1P configurations, and from 11.5% to 9.8% in 2P configurations with 0.2 albedo. Similarly, with 0.6 albedo, annual rear insolation mismatch decreases from 12.6% to 11.6% in 1P configurations, and from 11.9% to 10.4% in 2P configurations. However, we demonstrate that annual figures are insufficient for capturing the impact of torque tube reflection; seasonal and diurnal variations must also be considered.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.