Using the long-established Cardiff metal-mesh filter technology, we have exploited our ability to artificially manipulate the phase of a wavefront across a device in order to produce a dielectric-based Toraldo pupil working at millimeter wavelengths. The use of a Toraldo pupil to push the angular resolution of an optical imaging system beyond the classical diffraction limit is yet to be realized in the millimeter regime, but is an exciting prospect. Here we present the design and measured performance of a prototype Toraldo pupil, based on a 5 annuli design.
KEYWORDS: Receivers, Radio telescopes, Cryogenics, Polarization, Oscillators, Waveguides, Interference (communication), Electronic filtering, Linear filtering, L band
In this article, we present the design and performances of the radio receiver system installed at the Sardinia Radio
Telescope (SRT). The three radio receivers planned for the first light of the Sardinian Telescope have been installed in
three of the four possible focus positions. A dual linear polarization coaxial receiver that covers two frequency bands,
the P-band (305-410 MHz) and the L-band (1.3-1.8 GHz) is installed at the primary focus. A mono-feed that covers the
High C-band (5.7-7.7 GHz) is installed at the beam waveguide foci. A multi-beam (seven beams) K-band receiver (18-
26.5 GHz) is installed at the Gregorian focus. Finally, we give an overview about the radio receivers, which under test
and under construction and which are needed for expanding the telescope observing capabilities.
We present the design of the passive feed system of the dual-band receiver for the prime focus of the Sardinia Radio
Telescope (SRT), a new 64 m diameter radio telescope which is being built in Sardinia, Italy. The feed system operates
simultaneously in P-band (305-410 MHz) and L-band (1300-1800 MHz). The room temperature illuminators are
arranged in coaxial configuration with an inner circular waveguide for L-band (diameter of 19 cm) and an outer coaxial
waveguide for P-band (diameter of 65 cm). Choke flanges are used outside the coaxial section to improve the crosspolarization
performance and the back scattering of the P-band feed. The geometry was optimized for compactness and
high antenna efficiency in both bands using commercial electromagnetic simulators. Four probes arranged in
symmetrical configuration are used in both the P and the L-band feeds to extract dual-linearly polarized signals and to
combine them, through phased-matched coaxial cables, into 180 deg hybrid couplers. A vacuum vessel encloses the two
P-band hybrids and the two L-band hybrids which are cooled, respectively at 15 K and 77 K. For the P-Band, four low
loss coaxial feedthroughs are used to cross the vacuum vessel, while for the L-Band a very low loss large window is
employed. The P-band hybrids are based on a microstrip rat-race design with fractal geometry. The L-band hybrids are
based on an innovative double-ridged waveguide design that also integrates a band-pass filter for Radio Frequency
Interference (RFI) mitigation.
KEYWORDS: Receivers, Antennas, Mirrors, Telescopes, Radio astronomy, Control systems, Space telescopes, Radio telescopes, Astronomy, Electromagnetic coupling
We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m
diameter parabolic radiotelescope capable to operate with high efficiency in the 0.3-116 GHz frequency range. The
instrument is the result of a scientific and technical collaboration among three Structures of the Italian National Institute
for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomy Observatory (in
Sardinia,) and the Arcetri Astrophysical Observatory in Florence. Funding agencies are the Italian Ministry of Education
and Scientific Research, the Sardinia Regional Government, and the Italian Space Agency (ASI,) that has recently
rejoined the project. The telescope site is about 35 km North of Cagliari.
The radio telescope has a shaped Gregorian optical configuration with a 7.9 m diameter secondary mirror and
supplementary Beam-WaveGuide (BWG) mirrors. With four possible focal positions (primary, Gregorian, and two
BWGs), SRT will be able to allocate up to 20 remotely controllable receivers. One of the most advanced technical
features of the SRT is the active surface: the primary mirror will be composed by 1008 panels supported by electromechanical
actuators digitally controlled to compensate for gravitational deformations. With the completion of the
foundation on spring 2006 the SRT project entered its final construction phase. This paper reports on the latest advances
on the SRT project.
In this paper we'll describe the active surface system that will be provided on the new Italian radiotelescope being in the phase of erection in the Sardinia Island. SRT (Sardinia Radiotelescope) will be a 64m shaped dish working up to 100GHz by exploiting the active surface facility designed by the authors. This facility will overcome the effects of gravity deformations on the antenna gain and will also be used to re-shape in a parabolic form the primary mirror, in order to avoid large phase error contribution on the antenna gain for the highest frequencies placed on the primary focus. Together with the description of the SRT system, a wide overview will be given regarding our previous installation of an active surface system, that can be seen like a prototype for SRT, mounted on the 32m dish of the Noto antenna.
This contribution gives a description of the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna proposed by the Institute of Radio Astronomy (IRA) of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia) and it will join the two existing antennas of Medicina (Bologna) and Noto (Siracusa) both operated by the IRA. With its large antenna size (64m diameter) and its active surface, SRT, capable of operations up to about 100GHz, will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope
has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and the standing wave between secondary mirror and feed. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.
SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7 deg, in the frequency range 22-90 GHz. The Galactic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.