Polarization-Entangled Photon Sources (EPS) are an important enabling technology in the fields of quantum sensing, quantum communication, and quantum computing. Recently, a need has arisen for efficient sources of entangled photons with high brightness and phase stability, for use in free space and fiber-based quantum communication links. In this work, we present a prototype of EPS based on commercial bulk opto-mechanical components, generating photon pairs via type-0 parametric down-conversion (SPDC). The source is configured in a linear interferometer, where a dual beam displacement is performed by symmetrically disposed birefringent components. The pairs emission can be prepared as an N00N state for quantum sensing, or as a Bell state for entanglement-based Quantum Key Distribution (QKD) protocols. We show a maximal Bell inequality violation, on ⪆99% average visibility, proving the high quality of the generated entanglement. The unique geometry of this interferometer is intrinsically symmetric, thus completely removing any temporal walk-off and decoherence between the two components of the Bell state and enhancing its suitability for various on-field quantum applications.
Quantum technology promises improvements in imaging, computing, and communication, for example using the resource of entanglement between photons with spatial correlations. Detecting spatial correlations, or coincidences, between entangled photons scalably, efficiently, and affordably is therefore an essential capability. However, this task is non-trivial for existing camera technologies, which require low illumination intensities or low detection duty cycles to count coincidences at high signal-to-noise ratios, resulting in long acquisition time, or use expensive custom electronic components. Here, we present an entanglement imaging system based around a novel Single-Photon Avalanche Diode (SPAD) array camera, optimized for sparse illumination with correlated photon pairs. The system is capable of maintaining a duty cycle close to 100%, while simultaneously detecting spatially resolved coincidences with high SNR, enabling the acquisition of real-time entanglement videos at a ~Hz frame rate. We use our system to demonstrate real-time monitoring of entanglement interference visibility, optical system point spread function, as well as real-time widefield entanglement-enhanced phase imaging. Our results show that SPAD array cameras represent a natural choice for scalable entanglement detection and imaging applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.