This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this paper, we show for the first time that the lasing threshold and eventually the resonances intensity can be used for inferring changes of refractive index around a 15 μm dye doped polystyrene instead of the mode tracking procedure. The sensing mechanism relies on the spoiling of the resonator Q factor upon change of refractive index which eventually increases the lasing threshold. In addition to allow free space excitation and collection, alleviating the need for phase matched prism or fiber taper, this novel approach promises to reach lower detection limit by suppressing the need of high resolution spectral analysis of the whispering gallery mode spectra but instead relying on cost effective and highly sensitive intensity measurements.
Here, we present results we have achieved using SPR scattering as an alternative approach for optical fiber based plasmonic sensors. Although the use of a rough metallic coating induces some inherent limitations, such as a lower resolution, the architectural advantages and simplicity of the approach offer additional opportunities, such as multiplexing and self-referencing, which are not possible otherwise with a single fiber SPR sensor. A way to overcome the lower resolution that involves the use of microstructured optical fibers, as well as a new perspective on a complementary application, such as Metal Enhanced Fluorescence, which greatly benefits from SPR scattering, will be presented.
Here, lasing of the WGMs in fluorescent microcapillaries is demonstrated for the first time, and their application to refractive index sensing is investigated. The laser gain medium used here is embedded inside a high refractive index polymer coating deposited onto the inner surface of the capillary. Lasing can only be realized for thick polymer coatings (in this case ≥ 800 nm), with higher Q factor but also stronger confinement of the propagating wave, which lowers the refractive index sensitivity compared to non-lasing capillaries which can have thinner polymer coatings. We however find that the large improvement in signal-to-noise ratio and Q factor realized upon lasing more than compensates for the reduced sensitivity, resulting in an order-of-magnitude improvement in the detection limit for refractive index sensing.
Here we show that this inherent limitation can be solved using a relatively simple approach. This approach involves the development of a self-referenced biosensor consisting of two almost identically sized dye-doped polystyrene microspheres placed on adjacent holes at the tip of a suspended core optical fiber. Here self-referenced biosensing is demonstrated with the detection of Neutravidin in undiluted human serum samples. The fiber allows remote excitation and collection of the WGMs of the microspheres in a dip sensing setting. By taking advantage of surface functionalization techniques, one microsphere acts as a dynamic reference, compensating for nonspecific binding events, while the other microsphere is functionalized to detect the specific interaction. The almost identical size allows the two spheres to have virtually identical refractive index sensitivity and surface area. This ensures their responses to nonspecific binding and environmental changes are almost identical, whereby any specific changes such as binding events, can be monitored via the relative movement between the two sets of WGM peaks.
View contact details
No SPIE Account? Create one