A noise-induced signal propagation is reported in oscillatory
media with FitzHugh-Nagumo dynamics which is based on a noise-induced phase transition to excitability. This transition occurs
via a noise-induced suppression of self-excited oscillations, while the overall phase-space structure of the system is maintained. The noise-induced excitability enables the information transport in the originally oscillatory media. We demonstrate this new feature by the propagation of a wave front and the formation of a spiral in a two dimensional lattice. These spatio-temporal structures transport information and can be observed only in the presence of suitable amount of noise and not in the deterministic self-sustained oscillatory system. Thus we extend classes of nonlinear systems with signal transmission properties also to oscillatory systems, which demonstrate a noise-induced phase transition to excitability. Further on, the mechanism of noise-induced excitability provides the opportunity to control the information transport by noise via a triggering mechanism, i.e. the information channel is switched on in the presence of noise and switched off in its absence.
KEYWORDS: Stochastic processes, Oscillators, Signal to noise ratio, Complex systems, Interference (communication), Bistability, Solids, Statistical analysis, Neurons, Chemical elements
We study nonlinear systems under two noisy sources to demonstrate the concept of doubly stochastic effects. In such effects noise plays a twofold role: first it induces a special feature in the system, and second it interplays with this feature leading to noise-induced order. For this effect one needs to optimize both noisy sources, hence we call these phenomena doubly stochastic effects. To show the generality of this approach we apply this concept to several basic noise-induced phenomena: stochastic resonance, noise-induced propagation and coherence resonance. Additionally, we discuss an application of this concept to noise-induced transitions and ratchets. In all these noise-induced effects ordering occurs due to the joint action of two noisy sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.