We discuss a new generation fringe tracker (FT) that implements a Hierarchical Fringe Tracker (HFT) architecture with a very broad band near infrared spectral coverage from 1.1 to 2.2μm in the J, H and K bands. The goal is to approach the absolute maximum fringe tracking sensitivity in optical long baseline interferometry, first on the VLTI, and to show that an HFT has performances independent from the number of apertures, a key characteristic for larger interferometers from CHARA to the VLTI with more UTs or combining all UTs and ATs to future very large interferometers. This paper describes the development in progress of an end-to-end simulator of such a system based on our first laboratory tests of prototype HFT. This simulator already allowed us to define a new optimization for the integrated optics HFT chips, to discuss a set of operating parameters for our new generation fringe tracker and to confirm that it is applicable to an indefinite number of apertures and should approach or even exceed a limiting sensitivity on the VLTI of K~16, which is a gain of at least 3 magnitudes over the expected performance of the current GRAVITY FT in the context of the ongoing GRAVITY+ VLTI upgrade.
Hierarchical Fringe Trackers (HFT) maximize the sensitivity and accuracy of fringe tracking. Their performances are independent from the number of apertures. They cophase pairs of telescopes, then pairs of pairs and so on. We report the key results of mathematical analysis, design, manufacturing, optical tests and simulated performances of 4 telescopes HFT chips for the VLTI and 6 to 8 telescopes HFT chips for CHARA or a VLTI extension. An end-to-end simulation with realistic input piston and flux, based on the experimental characterization of the signals on the test bench, validates the servo loop and state machine architectures and supports the performance analysis, confirming the expected performance gain of about 3 magnitudes (with a limiting magnitude K>16 on the VLTI with UTs) and the fact that the performances do not decrease with the number of apertures. The performance gain is based on the combination of the HFT architecture with a very broad band HFT covering the 1.1 to 2.2μm domain with 3 to 5 HFT chips working in broad sub bands in J, H and K. Analysis of fringe jumps and losses at the sensitivity limit show that an HFT manages then more efficiently than the standard pairwise architecture. The impact of HFT characteristics on AGN science programs for optical interferometers is illustrated, showing that this architecture is the key for fascinating applications including direct distance measurements of AGNs accurate enough to contribute to the Hubble tension problem.
VERMILION is a VLTI visitor instrument project intended to extend the sensitivity and the spectral coverage of Optical Long Baseline Interferometry (OLBIn). It is based on a new concept of Fringe Tracker (VERMILIONFT) combined with a J band spectro-interferometer (VERMILION-J). The Fringe Tracker is the Adaptive Optics module specific to OLBIn that measures and corrects in real time the Optical Path Difference (OPD) perturbations introduced by the atmosphere and the interferometer, by providing a sensitivity gain of 2 to 3 magnitudes over all other state of the art fringe trackers. The J band spectro-interferometer will provide all interferometric measurements as a function of wavelength. In addition to a possible synergy with MATISSE, VERMILION-J, by observing at high spectral resolution many strong lines in J (Paβ-γ, HeII, TiO and other metallic monoxides), will cover several scientific topics, e.g. Exoplanets, YSOs, Binaries, Active Hot, Evolved stars, Asteroseismology, and also AGNs.
We present the optomechanical design of the Potsdam Arrayed Waveguide Spectrograph (PAWS), which is the first on-sky demonstrator of an integrated photonic spectrograph specifically designed and optimized for astronomy. The instrument is based on an arrayed waveguide grating (AWG) that was designed by and custom fabricated for the innovation center innoFSPEC Potsdam. The commissioning of the instrument is planned at the Calar Alto 2:2m Telescope in southern Spain. The core of the instrument is the AWG-chip as the primary dispersive element. The AWG device is coupled to the telescope module via a single-mode fibre (SMF). The spectral image on the output facet of the AWG is a superposition of multiple spectral orders due to the cyclic dispersive behavior of the waveguide array. The output of the AWG is fed into a free-space optical system housed inside a cryostat via an infinity-corrected microscope objective. The overlapping spectral orders are separated by a second dispersion stage using a ruled grating as a cross-dispersive element, and the resulting echellogram is projected onto a Teledyne 2k x 2k H2RG near-infrared array. The requirement of sub-micron accuracy of the fibre-chip alignment has led to an advanced photonic packaging method. In order to avoid on-site alignment procedures during the on-sky testing, the AWG mount, fibre-support, and microscope objective were integrated into a single monolithic module. Optical and thermal simulations and the design of the cryostat were realized by Andes Scientific. The read-out electronics and the compatible operating software for the detector was provided by the Max Planck Institute for Astronomy (MPIA). Data analysis is performed using the open-source data reduction software P3D, which provides functionality for the removal of the instrument signature, extraction of the spectra, correction for the blaze function, wavelength calibration, and processed data file export.
We introduced the use of Artificial Neural Networks (ANN) for centroiding in Shack-Hartmann wavefront sensors in the presence of elongated spots, as it will occur in Extremely Large Telescopes. We showed in simulation that ANNs can outperform existing techniques, such as the Matched Filter. The main advantage of our technique is its ability to cope with changing conditions, as real atmospheric turbulence behaves. Here we present experimental results from the laboratory that confirm the findings in our original article, while at the same time they are useful to refine the ANN-based techniques.
FIDEOS (FIbre Dual Echelle Optical Spectrograph) is a fibre-fed bench-mounted high-resolution echelle spec- trograph for the 1-m telescope at ESO in La Silla, Chile. It is based on a 44.41 lines/mm 70° blaze angle
echelle grating in quasi-Littrow mode, providing spectral resolution of R ~ 42 000, covering the spectral range from 400 nm to 680 nm. The detector is a 2k×2k CCD with 15 μm pixels. The spectrograph will be fed by two 50
µm core diameter fibres for the astronomical object and the simultaneous calibration lamp, respectively. Alter- natively, an iodine cell will be mounted on the telescope-spectrograph interface, providing a secondary spectral calibration source. In addition, the instrument will be mounted on a fixed optical-bench without movable parts rather than the CCD shutter and its enclosure will be thermally controlled to ensure opto-mechanical stability. Since the FIDEOS will deliver high resolution and spectral stability, it will be optimized for precision radial velocities.
Free-atmosphere, and surface-layer optical-turbulence have been extensively monitored over the years. The
optical-turbulence inside a telescope enclosure en the other hand has yet to be as fully characterized. For this
latest purpose, an experimental concept, LOTUCE (LOcal TUrbulenCe Experiment) has been developed in
order to measure and characterise the so-called dome-seeing. LOTUCE2 is an upgraded prototype whose main
aim is to measure optical turbulence characteristics more precisely by minimising cross-contamination of signals.
This characterisation is both quantitative (optical turbulence strength) and qualitative (assessing the optical
turbulence statistical model). We present the new opto-mechanical design, with the theoretical capabilities and
limitations to the actual models.
The Durham adaptive Optics Real Time Controller (DARC)1 is a real-time system for astronomical adaptive optics systems originally developed at Durham University and in use for the CANARY instrument. One of its main strengths is to be a generic and high performance real-time controller running on an off-the-shelf Linux computer. We are using DARC for two different implementations: BEAGLE,2 a Multi-Object AO (MOAO) bench system to experiment with novel tomographic reconstructors and LOTUCE2,3 an in-dome turbulence instrument. We present the software architecture for each application, current benchmarks and lessons learned for current and future DARC developers.
We present the optical concept and design of a fiber-fed echelle spectrograph for precise radial velocity measurements in the near-infrared. The spectrograph is designed to achieve a nominal resolution λ/Δλ of the order of 40000 and to cover the range from 0.9μm to 1.7μm in a single exposure. This spectrum is to be recorded on a 2048×2048 infrared detector. The instrument is designed to be mounted at 1 to 2 m class telescopes for survey purposes. We present in the optical design and the instrument capability. We do emphasis particularly on optical aberrations and thus discuss the instrument expected limitations from the optical viewpoint.
KEYWORDS: Telescopes, Adaptive optics, Atmospheric turbulence, Observatories, Wavefronts, Atmospheric optics, Algorithms, Global system for mobile communications, Image processing, CCD cameras
The futures large telescopes will be certainly equipped with Multi-Conjugate Adaptive Optics systems. The
optimization of the performances of these techniques requires a precise specification of the different components
of these systems. Major of these technical specifications are related to the atmospheric turbulence particularly
the structure constante of the refractive index C2n(h) and the outer scale L0(h). New techniques based on the moon limb observation for the monitoring of the C2n(h) and L0(h) profiles with high vertical resolution will be
presented.
In this paper the Paranal Surface Layer characterization is presented. Causes, physics and behavior of the SL above
Paranal surface are discussed. The analysis is developed using data from different turbulence profilers operated during
several campaigns between 2007 and 2009. Instruments used are SL-SLODAR, DIMM, Elevated DIMM, MASS, Lunar
Scintillometer and Ultrasonic Anemometers with temperature sensors positioned at different strategic heights.
Between February and April 2009 a number of ultrasonic anemometers, temperature probes and dust sensors were
operated inside the CTIO Blanco telescope dome. These sensors were distributed in a way that temperature and
3 dimensional wind speeds were monitored along the line of sight of the telescope. During telescope operations,
occasional seeing measurements were obtained using the Mosaic CCD imager and the CTIO site monitoring MASS-DIMM
system. In addition, also a Lunar Scintillometer (LuSci) was operated over the course of a few nights inside the
dome. We describe the instrumental setup and first preliminary results on the linkage of the atmospheric conditions
inside the dome to the overall image quality.
MooSci is a linear array of photodiodes that measures time varying intensities of light reflected from the Moon, lunar
scintillation. The covariance between all possible pairs of photodiodes can be used to reconstruct the ground layer
turbulence profile from the ground up to a maximum height roughly determined by the distance between the furthest pair
of detectors. This technique of profile restoration will be used for site testing at various locations. This paper describes
the design of a lunar scintillometer and preliminary results from Las Campanas Peak.
High angular resolution observations of the sun are limited by atmospheric turbulence. The MISOLFA seeing monitor (still under construction) is developed to obtain spatial and temporal statistical properties of optical turbulence by analyzing local motions observed on solar edge images. The solar flying shadows used for angle-of-arrival spatio-temporal analysis are observed in the pupil plane image by mean of a rectangular thin slit positioned on the solar edge image. A numerical simulation of the light propagation in both the atmospheric turbulence medium and the MISOLFA optical system is carried out studying the relation of the measured intensity variations in the pupil plane to angle-of-arrival fluctuations in the non-isoplanatic case. First results are presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.