Precise placement of needles plays a crucial role in percutaneous procedures as it helps to achieve higher diagnostic accuracy and accurate tumor targeting. C-arm cone-beam computed tomography (CBCT) has the potential to precisely image the anatomy in direct vicinity of the needle. However, exact needle positioning is very difficult due to strong metal artifacts around the needle. In this study, we evaluate the performance of the prior image constrained compressed sensing (PICCS) CBCT reconstruction in presence of metal objects. Our results confirm the high performance of PICCS to reduce needle artifacts using both circular and non-conventional trajectories under kinematic constraints.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.