Heat-assisted magnetic recording (HAMR) is a potential enabling technology for ultrahigh density data storage
systems. In HAMR, a near-field transducer (NFT) delivers a subdiffraction heat spot to record bits of data
on a high-anisotropy magnetic media. We developed an intuitive 1D Fourier model that expedites the analysis
and design of the NFT. Among other strengths, the simple model predicts rather surprisingly and in agreement
with 3D simulations, that for metallic nanoresonators the longitudinal component of the electric field dominates
the heat transfer to the media. The proposed Fourier model serves well as a platform to study electromagnetic
behavior such as field confinement and heat spot generation of 3D NFT designs.
We will present experimental studies and numerical modeling of nonlinear optical processes in plasmonic metamaterials based on assemblies of metallic nanorods and other complex geometries. Second- and third-order nonlinear optical response originating from a plasmonic component of the metamaterial will be discussed. Such plasmonic metamaterials can be used for engineering enhanced nonlinear optical properties with the required spectral and temporal response. We will also discuss a novel concept of an on-chip ultrafast all-optical modulator based on a hyperbolic metamaterial integrated in a silicon waveguide.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.