All-optical wavelength converters (AOWCs) based on parametric amplification in highly nonlinear fibers are investigated and evaluated, aiming at application flex-grid optical networks. A multichannel transmission system with a multilevel modulation format at 56-Gb / s bit rate is adopted. Parameters such as symbol error rate and signal bandwidth allocation are evaluated considering the optical signal-to-noise ratio, the power reception level, the channel spacing, and the impact of several cascade conversions—series of multiple AOWCs—on the signal quality. This work was carried out with an analytical modeling and computer simulations. Results reveal consistent modeling and adequate operation of the proposed AOWCs for flex-grid wavelength-division multiplexing networks and indicate that the number of conversions is limited by the size of the converter operating band and the allowed flex-grid slot size.
In this paper, the impact of the number of channels on the performance of elastic optical networks (EONs) is examined considering a multilevel modulation format and coherent transmission. Network design parameters such as spectral bandwidth and channel symbol error rate (SER), are analysed. We simulated the transmission of quadrature phase shift-keying (QPSK) signals, modulated at 56 and 100 Gbps, to evaluate a proposed flexible spectral allocation method in order to evaluate the effect of number of channels and the required total spectral bandwidth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.