Deep learning has shown significant performance advantages in object recognition problems. In particular, convolutional neural networks (CNN's) have been a preferred approach when recognizing objects in imagery. In general, however, CNN's have been applied to closed set recognition problems - those problems where all the objects of interest are in both the training and test sets. This effort addresses target classification using synthetic aperture radar (SAR) as the imaging sensor. In addition, this effort investigates the open set classification problem where targets in the test set are not in the training set. In this open set problem, the objective is to correctly classify test target types represented in the training set while rejecting those not in the training set as unknown. This open set problem is addressed using a hybrid approach of CNN's combined with a novel support vector machine (SVM) approach called SV-means.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.