KEYWORDS: Radio telescopes, Antennas, Finite element methods, Reflectors, Solar radiation, Temperature metrology, Thermal effects, Solar radiation models, Thermal modeling, Optical aberrations
The Sardinia Radio Telescope, a 64-metre diameter fully steerable radio telescope operated by INAF, will be upgraded in order to extend its current operating frequency range 0.3-26.5 GHz up to 116 GHz, thanks to a National Operational Program (PON) funding assigned to INAF by the Italian Ministry of University and Research. The PON project is organized in nine Work Packages, one of which is dedicated to the accomplishment of a sophisticated metrology system designed to monitor the cause of the pointing errors and the reflector surface deformations. The entire antenna structure will therefore be equipped with a network of sensors, like thermal sensors, inclinometers, accelerometers, collimators, anemometers, strain gauges and others, to study environmental stresses and how they affect the SRT performances. This work is devoted to the investigation of the thermal stress effects produced by solar radiation. In particular, two analyses are carried out to confirm the relevance of a thorough temperature monitoring system, both conducted using Finite Element Analysis. First, a possible approach for the simulation of realistic thermal scenarios due to insolation is proposed and the effects on the pointing accuracy are analysed. Second, a feasible method to study the impacts that a differential heating of the Back Up Structure (BUS) produces on the radio telescope main reflector surface is presented. Finally, these effects are analysed as optical aberrations and modelled in terms of Zernike polynomials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.