Plasmonic ultraviolet (UV) photodetectors have witnessed ongoing and tremendous enhancements in quantum efficiency and responsivity. Here, we go beyond regular plasmonic detectors by using periodic arrays of fractal aluminum nanostructures as Cayley trees deposited on a Ga2O3 substrate to generate photocurrent. We show that the proposed aluminum Cayley trees are able to support and intensify strong broad plasmon resonant modes across the UV to the visible spectrum. It is shown that the Cayley trees can be tailored to facilitate strong absorption at high energies (short wavelengths), resulting formation of hot carriers. Having perfect compatibility to operate at the UV spectrum, fractal aluminum structures and Ga2O3 substrate help to increase the produced photocurrent remarkably. Presence of Ga2O3 layer blue-shifts the peak of absorption to higher energies and helps to generate hot carriers at deeper UV wavelengths.
We introduce a platform based on plasmonic metamaterials to design various optical devices. A simple structure brokenring
with a nanodisk at the center is utilized to excite and hybridize the plasmon resonant modes. We show that the
proposed nanoantenna is able to support strong sub- and superradiant plasmon resonances because of its unique
geometrical features. Using the concentric ring/disk in a dimer orientation as a nanoantenna on a multilayer metasurface
consisting of graphene monolayer, we induced double sharp plasmonic Fano resonant modes in the transmission window
across the visible to the near-infrared region. Considering the strong polarization-dependency of the broken-ring/disk
dimer antenna, it is shown that the proposed plasmonic metamaterial can be tailored as an optical router device for fast
switching applications. This understanding opens new paths to employ plasmonic metamaterials with simple geometrical
nanoscale blocks for sensing and switching applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.