Organometallic iridium(III) complexes have seen widespread use over the past two decades, particularly as phosphorescent dopants in organic light emitting diodes (OLEDs) due to their large spin-orbit coupling and metal-toligand charge transfer (MLCT) excited states. Interest in the non-linear optical (NLO) applications of these materials has increased recently with reports of both two-photon absorption (2PA) and reverse saturable absorption (RSA). A family of materials of the form [IrIII(NO2piq)2(acac)] were synthesized and characterized, where acac is acetylacetonate and NO2piq is a nitrophenylisoquinoline ligand. In order to assess structure-property relationships for the photophysics of these complexes, the placement of the nitro group was altered on the phenyl ring. Systematic control over the maxima of the absorption and photoluminescence bands attributed to the MLCT excited states was achieved through the ligand variation. The photophysical properties of this family of materials are discussed in detail and include their linear absorption spectra, photoluminescence measurements at 298 and 77K, excited state lifetimes, and CIE color chromaticity coordinates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.