A demand for responsive, high-resolution Earth observations is emerging for mitigating the human suffering and damage that follow large-scale disasters. One of the most promising advances is a sophisticated optical imager with a large, 3.6-m satellite-mounted telescope in geostationary orbit. The imager of the proposed space telescope has a segmented mirror and offers a ground sampling distance of better than 10 m and a latency of shorter than 30 minutes. For the imager to realize diffraction-limited performance, deformable mirrors are planned to be installed at the exit pupil of the telescope system. One candidate for the deformable mirrors in segmented telescope is based on a micro-electromechanical system (MEMS) that offers a small actuator pitch, fine step resolution, and excellent hysteretic motion response. This paper presents the wavefront correction of aberrations with a high and low spatial frequency using MEMS deformable mirror on an optical testbed. The expected image quality is also evaluated through numerical simulation.
One of JAXA’s future missions, using an imaging Fourier Transform Spectrometer (FTS), requires the focal plane array (FPA) that has high sensitivity up to the very long-wavelength infrared (VLWIR) region. Since a Type-II superlattice (T2SL) is the only known infrared material to exhibit performance that is theoretically predicted to be higher than that of HgCdTe additionally the cutoff wavelength can be tailored in the wavelength region of 3-30 μm, we started the research and development of the T2SL detector in 2009. In order to confirm our final goal, which is to realize the FPA with a cutoff wavelength of 15 μm, we first fabricated the 320 × 256 (QVGA format) InAs/GaInSb T2SL FPA with a cutoff wavelength of 15 μm, and the large-format 640 × 512 (VGA format) T2SL FPA is followed because the other missions, using an infrared imager, require the large-format FPA. The noise-equivalent delta temperature measured with F1.4 optics was 0.15 K for QVGA format T2SL FPA at 77 K. It was 0.35 K for VGA format T2SL FPA at 77 K, but there is non-uniformity, and further improvements are necessary to achieve high performance FPAs.
One of JAXA’s future missions, using an imaging Fourier Transform Spectrometer (FTS), require the focal plane array (FPA) that has high sensitivity and a very long-wavelength infrared (VLWIR) cutoff wavelength. Since a Type-II superlattice (T2SL) is the only known infrared material to have a theoretically predicted performance superior to that of HgCdTe and the cutoff wavelength can be tailored in the wavelength region of 3-30 μm, we started the research and development of the T2SL detector in 2009. In order to confirm our final goal which is to realize an FPA with a cutoff wavelength of 15 μm, we fabricated InAs/GaInSb T2SL infrared detectors with a cutoff wavelength of 15 μm. We show the results of the dark current and responsivity measurement of single pixel detectors and the development status of FPAs including the image taken by a 320 × 256 InAs/GaInSb T2SL FPA with a cutoff wavelength of 15 μm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.