The development of sources and optics has allowed the migration of techniques originally developed for synchrotron beam lines to field, industrial and clinical applications. For example, monochromatic beams produced with synchrotron sources are known to give higher contrast for mammography than clinical broadband sources. However,
clinical sources with very narrow energy bandwidth, produced for example with flat monochromator crystals, tend to have limited intensity and field of view. Doubly curved crystal x-ray optics can provide intense focused monochromatic fan beams from laboratory x-ray tube sources. These optics are routinely employed in crystallography and x-ray fluorescence, however, careful analysis is required to assess whether the focused beam creates unacceptable divergence
and hence poor spatial resolution in imaging. The intensity and resolution of the focused beam were measured and compared to simulation results. The measurements and simulations were in good agreement, allowing for system design to provide the required resolution. High efficiency collimating optics coupled with diffracting crystals also can produce relatively high intensity and resolution. For both methods, monochromatization occurs before the patient, resulting in a potential dose reduction as well as significant measured contrast enhancement. If the diffraction angle is chosen at 90 degrees, a polarized monochromatic beam is produced. While synchrotron sources are naturally polarized, polarized
beams have been less accessible for field and clinical applications. Development has begun of polarized beam sources using very low power x-ray tubes coupled to polycapillary optics. The choice of the polarizing and analyzing crystals is a tradeoff between intensity and sensitivity to depolarization effects. Intensity and rocking curve measurements have been performed with matched silicon crystals and graphite crystals.
Focusing x-ray optics can be used to increase the intensity onto small samples, greatly reducing the data collection time for powder diffraction. Typically, the beam convergence is restricted to avoid loss of resolution since the focused beams broaden the resulting powder diffraction rings. However, the resolution, as defined by the uncertainty in peak location, can be much less than the peak width. Two types of x-ray optics, polycapillary and doubly curved
crystals, were used to focus x rays onto standard inorganic powder diffraction samples. Comparisons were made of system resolution and diffracted beam intensity using low power microfocus sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.