In this paper we will report on the most recent immersion scanner innovations to improve scanner matching overlay. These are realized by improvements in e.g. optical column distortion, wafer alignment and system-metrology. We will elaborate on scanner solutions for wafer handling/chucking of warped wafers. Furthermore, to enable cost-of-ownership reduction, system design implementations driving larger scanner productivity (wafer per hour) will be presented.
The foundations of leading edge DRAM manufacturing are built on accurate EUV lithography exposures in close synergy with cutting-edge immersion layers as well as advanced patterning schemes (e.g. self-aligned multiple patterning). Final device yield critically depends on the subsequent and accurate stacking of multiple layers with device features of precise width and edge placement. To support the ever-decreasing requirements for both the EUV as well as the DUV, (edge) placement accuracy, scanner enhancements are required on both platforms. In this paper we report on the improvements of the NXT:2100i immersion scanner to further reduce the (edge) placement errors within the die (intra-field) and across the full wafer (inter-field). The NXT:2100i incorporates a new projection optics with built-in distortion manipulator that extends the intra-field correction capability for both X and Y directions. The external overlay interface is extended with the distortion manipulator degrees of freedom to handle high spatial frequent distortion data of a to-be-matched scanner or high spatial frequent overlay fingerprints measured by after develop or after etch metrology. Thermal conditioning of the reticle is improved with a fast conditioned internal reticle library resulting in lower reticle-to-reticle temperature variation. Improved lens metrology (aberrations) and reticle align accuracy (alignment/overlay) is achieved with a better integrated image sensor. Improved alignment accuracy and reduced alignment process dependencies for wafer alignment are realized with 12-colors parallel measurements and by adding more alignment marks measurements at the wafer measure side without throughput impact. In concert with the hardware components, various software algorithms are updated, yielding improved inter- and intra-field overlay setup and improved reticle heating induced overlay. We will detail the specific module performance items as well as the system performance of the NXT:2100i scanner, both in reference (DRAM relevant overlay) to DUV as well as to EUV scanners.
As overlay tolerances tighten node-over-node, the measurement and control of overlay has progressed from the low (spatial) frequent domain toward higher spatial frequencies. At present up to 3rd order in the (non-scanning) slit direction can be addressed on high end systems. With the introduction of an advanced distortion-manipulator on an ArFi immersion scanners a significant improvement in the spatial frequency of overlay control can be achieved. This actuator will now enable at least up to 9th order lens distortion manipulation and control in the (non-scanning) slit direction, with future extendibility to on-the-fly adjustments while scanning. The manipulator setup and distortion control is fully incorporated in the scanner software and allows for lens fingerprint optimization, better dynamic lens heating control, and scanner stability control to maintain overlay performance over time. Also an external scanner overlay optimization interface is made available that enables machine-to-machine matching within the immersion platform as well as for cross-matching to the EUV platform. Via this interface also high spatial-frequent process corrections can be send to the scanner. In this paper, we will show the capability of the scanner-integrated distortion manipulator on abovementioned aspects using on-scanner aberration metrology, and in-resist distortion and overlay metrology.
Scanner induced pattern shifts between layers are a large contributor to DRAM Bitline to Active overlay. One of the main root causes for this Pattern Shift non-Uniformity are lens aberrations. Currently measuring the Bitline to Active overlay requires a decap CDSEM method1. In this paper, an in-resist pattern shift uniformity metrology method is proposed which quantifies the main DRAM Bitline to Active overlay without the necessity to decap. We have designed a high transmission reticle (≥ 60%) to measure the pattern shift non-uniformity between two dense gratings under the rotation angle of the Active layer in both cold and hot lens states. Each module on the reticle contains product-like features and a variety of metrology targets, i.e. alignment and overlay, such that the product-to-product and the productto- metrology pattern shift fingerprints can be measured. OPC is applied to enlarge the overlapping process windows of the metrology targets with respect to the product-like features.
While looking for intrafield CD variability budget definition we have observed that mask CDU correlates much
better to silicon intrafield CDU when it is combined with an edge of field overexposure. This parasitic light diffusion
into the field from the edge, generating a localized overexposure, is related to a mechanism called Out-Of-Field
straylight.
In this paper we will show evidences of this straylight mechanism, from specific experiments as well as from inline
intrafield CDU analysis. In parallel we will detail specific scanner and masks tests that are being done attempting
to quantify and understand this phenomenon.
During this first characterisation phase we have also seen that this signature is quite systematic from a scanner to
another and could be somehow modulated by the mask itself (transmission and absorber type). Today straylight is
modelled in our APC as a unique contribution added to the mask and further investigations are needed to fully
characterize it.
As K1 factor for mass-production of memory devices has been decreased to almost its theoretical limit, the process
window of lithography is getting much smaller and the production yield has become more sensitive to even small
variations of the process in lithography. So it is necessary to control the process variations more tightly than ever. In
mass-production, it is very hard to extend the production capacity if the tool-to-tool variation of scanners and/or scanner
stability through time is not minimized. One of the most critical sources of variation is the illumination pupil. So it is
critical to qualify the shape of pupils in scanners to control tool-to-tool variations.
Traditionally, the pupil shape has been analyzed by using classical pupil parameters to define pupil shape, but these
basic parameters, sometimes, cannot distinguish the tool-to-tool variations. It has been found that the pupil shape can be
changed by illumination misalignment or damages in optics and theses changes can have a great effect on critical
dimension (CD), pattern profile or OPC accuracy. These imaging effects are not captured by the basic pupil parameters.
The correlation between CD and pupil parameters will become even more difficult with the introduction of more
complex (freeform) illumination pupils.
In this paper, illumination pupils were analyzed using a more sophisticated parametric pupil description (Pupil Fit
Model, PFM). And the impact of pupil shape variations on CD for critical features is investigated. The tool-to-tool
mismatching in gate layer of 4X memory device was demonstrated for an example. Also, we interpreted which
parameter is most sensitive to CD for different applications. It was found that the more sophisticated parametric pupil
description is much better compared to the traditional way of pupil control. However, our examples also show that the
tool-to-tool pupil variation and pupil variation through time of a scanner can not be adequately monitored by pupil
parameters only, The best pupil control strategy is a combination of pupil parameters and simulated CD using measured
illumination pupils or modeled pupils.
KrF lithography is nowadays widely used for volume production spanning many device layers ranging from front-end 90nm to mid- & back-end layers in 45nm and 32nm ITRS imaging nodes. In this paper we discuss the addition of the new high-NA XT:1000H TWINSCAN(TM)scanning exposure tool to the KrF portfolio. We discuss advances in the system design and elaborate on its imaging and overlay performance. It is shown that stable tool performance supports 80nm resolution volume manufacturing. Extendibility with polarization towards sub-80nm is also addressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.