This paper presents a novel multi-label active learning (MLAL) technique in the framework of multi-label remote sensing (RS) image scene classification problems. The proposed MLAL technique is developed in the framework of the multi-label SVM classifier (ML-SVM). Unlike the standard AL methods, the proposed MLAL technique redefines active learning by evaluating the informativeness of each image based on its multiple land-cover classes. Accordingly, the proposed MLAL technique is based on the joint evaluation of two criteria for the selection of the most informative images: i) multi-label uncertainty and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the multi-label classification algorithm in correctly assigning multi-labels to each image, whereas multi-label diversity criterion aims at selecting a set of un-annotated images that are as more diverse as possible to reduce the redundancy among them. In order to evaluate the multi-label uncertainty of each image, we propose a novel multi-label margin sampling strategy that: 1) considers the functional distances of each image to all ML-SVM hyperplanes; and then 2) estimates the occurrence on how many times each image falls inside the margins of ML-SVMs. If the occurrence is small, the classifiers are confident to correctly classify the considered image, and vice versa. In order to evaluate the multi-label diversity of each image, we propose a novel clustering-based strategy that clusters all the images inside the margins of the ML-SVMs and avoids selecting the uncertain images from the same clusters. The joint use of the two criteria allows one to enrich the training set of images with multi-labels. Experimental results obtained on a benchmark archive with 2100 images with their multi-labels show the effectiveness of the proposed MLAL method compared to the standard AL methods that neglect the evaluation of the uncertainty and diversity on multi-labels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.