The effect of repetitive sub-concussive head impact exposure in contact sports like American football on brain health is poorly understood, especially in the understudied populations of youth and high school players. These players, aged 9-18 years old may be particularly susceptible to impact exposure as their brains are undergoing rapid maturation. This study helps fill the void by quantifying the association between head impact exposure and functional connectivity, an important aspect of brain health measurable via resting-state fMRI (rs-fMRI). The contributions of this paper are three fold. First, the data from two separate studies (youth and high school) are combined to form a high-powered analysis with 60 players. These players experience head acceleration within overlapping impact exposure making their combination particularly appropriate. Second, multiple features are extracted from rs-fMRI and tested for their association with impact exposure. One type of feature is the power spectral density decomposition of intrinsic, spatially distributed networks extracted via independent components analysis (ICA). Another feature type is the functional connectivity between brain regions known often associated with mild traumatic brain injury (mTBI). Third, multiple supervised machine learning algorithms are evaluated for their stability and predictive accuracy in a low bias, nested cross-validation modeling framework. Each classifier predicts whether a player sustained low or high levels of head impact exposure. The nested cross validation reveals similarly high classification performance across the feature types, and the Support Vector, Extremely randomized trees, and Gradboost classifiers achieve F1-score up to 75%.
The effect of subconcussive head impact exposure during contact sports, including American football, on brain health is poorly understood particularly in young and adolescent players, who may be more vulnerable to brain injury during periods of rapid brain maturation. This study aims to quantify the association between cumulative effects of head impact exposure from a single season of football on white matter (WM) integrity as measured with diffusion MRI. The study targets football players aged 9-18 years old. All players were imaged pre- and post-season with structural MRI and diffusion tensor MRI (DTI). Fractional Anisotropy (FA) maps, shown to be closely correlated with WM integrity, were computed for each subject, co-registered and subtracted to compute the change in FA per subject. Biomechanical metrics were collected at every practice and game using helmet mounted accelerometers. Each head impact was converted into a risk of concussion, and the risk of concussion-weighted cumulative exposure (RWE) was computed for each player for the season. Athletes with high and low RWE were selected for a two-category classification task. This task was addressed by developing a 3D Convolutional Neural Network (CNN) to automatically classify players into high and low impact exposure groups from the change in FA maps. Using the proposed model, high classification performance, including ROC Area Under Curve score of 85.71% and F1 score of 83.33% was achieved. This work adds to the growing body of evidence for the presence of detectable neuroimaging brain changes in white matter integrity from a single season of contact sports play, even in the absence of a clinically diagnosed concussion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.