In high power laser system, the wavefront quality of large optic elements in the mid-frequency region plays a critical role in the system performance and safe operation. A simple and efficient measurement method for mid-frequency wavefront error is used, which employs the extended ptychographical iterative engine algorithm and has simple structure, low environment requirement and flexible adjustable frequency ranges. This method has been successfully implemented for the wedge focused lens to achieve accurate mid-frequency measurement. Further it can be extended to a wide range of large optical components, especially for which the wavefronts are not easy to be measured using interferometers.
3ω laser damage of fused silica optics is the bottleneck of high power laser systems for ICF. Excellent beam quality plays an important role in improving the anti-damage capability of final optics system. We have developed a new optical field measurement technology based on computational optical imaging. With the high power laser prototype of SGII-UP facility, damage resistance of final optics was experimentally studied. The near filed of laser beam was measured with a high resolution to study the effects of modulation and propagation on laser damage. The near field improvement of high power laser beam are reported and the influence of near filed quality on damage performance of final optics are discussed. The development of the defect detection techniques of final optics are introduced. Finally, we present the development perspective of final optics system for ICF laser driver. At present, the damage resistance capability of final optics assembly is 6J/cm2 at normal operation, we will continue to improve the ability in the next step of work.
Stress measurement is significant to evaluate and predict optical behaviour of the birefringence components. The separation of two principal stress components is a difficult problem due to the coupling between them. A new PIE-based stress measurement method is proposed. Combining with the four-step phase-shifting measuring method, the complex amplitude transmittance functions of the sample in different phase-shifting states are reconstructed. Then the quantitative stress birefringence information are extracted respectively from the amplitude information and phase information. This method can achieve the complete stress information measurement and is especially suitable for the large-size samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.