Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental “bench” laboratory studies to clinical patient “bedside” diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.
The design and manufacture of intraocular lenses (IOLs) depend upon the identification and quantitative preclinical evaluation of key optical properties and environmental parameters. The confocal laser method (CLM) is a new technique for measuring IOL optical properties, such as dioptric power, optical quality, refractive index, and geometrical parameters. In comparison to competing systems, the CLM utilizes a fiber-optic confocal laser design that significantly improves the resolution, accuracy, and repeatability of optical measurements. Here, we investigate the impact of changing the beam diameter on the CLM platform for the evaluation of IOL dioptric powers. Due to the Gaussian intensity profile of the CLM laser beam, the changes in focal length and dioptric power associated with changes in beam diameter are well within the tolerances specified in the ISO IOL standard. These results demonstrate some of the advanced potentials of the CLM toward more effectively and quantitatively evaluating IOL optical properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.