Photopolymerization of liquid crystal monomers initiated by means of a dichroic photoinitiator provides an additional
degree of freedom in controlling the morphology and structure of the liquid crystal networks formed. The absorption of
the dichroic photoinitiator, and thereby its initiation rate, depends on its position towards the transversal light beam used
for polymerization as well as its position towards the polarization of the light beam. The photoinitiator adapts the
director profile of the liquid crystal monomer. As a result planar oriented areas aligned orthogonal to the propagation
direction of the light beam polymerize faster than the ones parallel to it. Similarly, planar aligned areas with their
orientation parallel to the electrical field vector of the light polymerize faster than the planar aligned areas oriented
perpendicular to that. Based on this principle complex lithographic structures are built, not only forming structures in the
plane of the polymerizing film but also in the third dimension along its cross-section. Additionally, applying the dichroic
photoinitiator together with the principle of polymerization induced diffusion in monomer blends provides a wealth of
new structures, especially when combined further with complicated, but well-controlled, morphologies such as those of
twisted, splayed and cholesteric liquid crystal monomers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.