As patterns shrink to physical limits, advanced Resolution Enhancement Technologies (RET) encounter increasing challenges to ensure a manufacturable Process Window (PW). Moreover, due to the wide variety of pattern constructs for logic device layers, lithographically weak patterns (spots) become a difficult obstacle despite Source and Mask co- Optimization (SMO) and advanced OPC being applied. In order to overcome these design related lithographically weak spots, designers need lithography based simulator feedback to develop robust design rules and RET/OPC engineers must co-optimize the overall imaging capability and corresponding design lithography target. To meet these needs, a new optimization method called SmartDRO (Design Rule Optimization) has been developed. SmartDRO utilizes SMO’s Continuous Transmission Mask (CTM) methodology and optimization algorithm including design target variables in the cost function. This optimizer finds the recommended lithography based target using the SMO engine. In this paper, we introduce a new optimization flow incorporating this SmartDRO capability to optimize the target layout within the cell to improve the manufacturable process window. With this new methodology, the most advanced L/S patterns such as metal (k1 = 0.28) and the most challenging contact patterns such as via (k1 = 0.33) are enabled and meet process window requirements.
Recently, the dramatic acceleration in dimensional shrink of DRAM memory devices has been observed. For sub 60 nm memory device, we suggest the following method of optical proximity correction (OPC) to enhance the critical dimension uniformity (CDU). In order to enhance CD variation of each transistor, hundreds of thousand transistor CD data were used through design based metrology (DBM) system. In a traditional OPC modeling method, it is difficult to realize enhancement of CD variation on chip because of the limitation of OPC feedback data.
Even though optical properties are surely understood from recent computational lithography models, there are so many abnormalities like mask effect, thermal effect from the wafer process, and etch bias variation of the etching process. Especially, etch bias is too complicate to predict since it is related to variations such as space among adjacent patterns, the density of neighboring patterns and so on.
In this paper, process proximity correction (PPC) adopting the pattern to pattern matching method is used with huge amount of CD data from real wafer. This is the method which corrects CD bias with respect to each pattern by matching the same coordinates. New PPC method for enhancement of full chip CD variation is proposed which automatically corrects off-targeted feature by using full chip CD measurement data of DBM system. Thus, gate CDU of sub 60 nm node is reduced by using new PPC method. Analysis showed that our novel PPC method enhanced CD variation of full chip up to 20 percent.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.